Carrier Design Guide

SMARC T335x Carrier Board Hardware Design Guide

embedaen

Revision History

Revision	Date	Changes from Previous Revision	
1.0	2013/7/26	Initial Release	
1.2	2014/04/19	Update to Hardware rev. 00B0	
		1. Remove the 10k pull-ups on USB_EN_OC#	
		2. Add SDIO_PWREN Schematics	
		3. Rename Evaluation Carrier Board from	
		Smartbase T3 to SMART-BEE	
1.3	2014/11/05	Correct CARRIER_PWR_ON Power Rail from	
		VDD_IN to VDD_IO	

USER INFORMATION

About This Manual

This document provides information about products from EMBEDIAN, INC. No warranty of suitability, purpose, or fitness is implied. While every attempt has been made to ensure that the information in this document is accurate, the information contained within is supplied "as-is" and is subject to change without notice.

For the circuits, descriptions and tables indicated, EMBEDIAN assumes no responsibility as far as patents or other rights of third parties are concerned.

Copyright Notice

Copyright © 2013 EMBEDIAN, INC..

All rights reserved. No part of this manual may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), without the express written permission of EMBEDIAN.

Trademarks

The following lists the trademarks of components used in this board.

- ARM is a registered trademark of ARM Limited.
- Android is a registered trademark of Google
- Linux is a registered trademark of Linus Torvalds.
- WinCE is a registered trademark of Microsoft
- TI is a registered trademark of Texas Instruments
- All other products and trademarks mentioned in this manual are trademarks of their respective owners.

Standards

EMBEDIAN is ISO 9001:2008 and ISO14001-certified manufacturer. SMARC is an SGET standard for ARM computer on module.

Warranty

This EMBEDIAN product is warranted against defects in material and workmanship for the warranty period from the date of shipment. During the warranty period, EMBEDIAN will at its discretion, decide to repair or replace defective products.

Within the warranty period, the repair of products is free of charge as long as warranty conditions are observed.

The warranty does not apply to defects resulting from improper or inadequate maintenance or handling by the buyer, unauthorized modification or misuse, operation outside of the product's environmental specifications or improper installation or maintenance.

EMBEDIAN will not be responsible for any defects or damages to other products not supplied by EMBEDIAN that are caused by a faulty EMBEDIAN product.

Technical Support

Technicians and engineers from EMBEDIAN and/or its subsidiaries and official distributors are available for technical support. We are committed to making our product easy to use and will help you use our products in your systems.

Before contacting EMBEDIAN technical support, please consult our Web site for the latest product documentation, utilities, and drivers. If the information does not help solve the problem, contact us by e-mail or telephone.

Table of Contents

CHAPTER 1 INTRODUCTION	10
1.1 ACRONYMS AND ABBREVIATIONS USED	11
1.2 SIGNAL TABLE TERMINOLOGY	14
1.3 DOCUMENT AND STANDARD REFERENCES	17
1.4 INTENDED AUDIENCE	19
CHAPTER 2 INTERFACES	21
2.1 SMARC T335X CONNECTOR PIN MAPPING	
2.2 ETHERNET INTERFACE	32
2.3 USB INTERFACE	45
2.4 PARALLEL RGB LCD INTERFACE	55
2.5 SD/SDIO INTERFACE	71
2.6 I2S AUDIO INTERFACE	76
2.7 CAN BUS INTERFACE	80
2.8 SERIAL COM PORT INTERFACE	85
2.9 SPI INTERFACE	90
2.10 I2C BUS INTERFACE	95
2.11 SELECTING THE BOOT MODE	99
2.12 WATCHDOG CONTROL SIGNALS	101
CHAPTER 3 POWER DESIGN GUIDELINE	104
3.1 POWER SIGNALS	104
3.2 RTC BATTERY	108
3.3 POWER FLOW AND CONTROL SIGNALS BLOCK DIAGRAM	109
3.4 POWER STATES	111
3.5 POWER SEQUENCES	112
3.6 LAYOUT REQUIREMENTS	116
3.7 REFERENCE SCHEMATICS	117
CHAPTER 4 FLOOR PLANNING THE PCB	120
4.1 CARRIER CONNECTOR	120
4.2 MODULE AND CARRIER CONNECTOR PIN NUMBERING CONVENTION	123
4.3 MODULE OUTLINE – 82MM X 50MM MODULE	123
4.4 MODULE "Z" HEIGHT CONSIDERATION	125
4.5 CARRIER BOARD CONNECTOR PCB FOOTPRINT	126
4.6 MODULE AND CARRIER BOARD MOUNTING HOLES – GND CONNECTION	127
4.7 CARRIER BOARD STANDOFFS	127

Using this Guide

This document is a guideline for developing a carrier board hardware that confirms to the specifications for *SMARC (ULP-COM) T335X* computer on module.

Conventions used in this guide

This table describes the typographic conventions used in this guide:

This Convention	Is used for
Italic type	Emphasis, new terms, variables, and document titles.
monospaced type	Filenames, pathnames, and code examples.

Embedian Information

Document Updates

Please always check the product specific section on the Embedian support website at www.embedian.com/ for the most current revision of this document.

Contact Information

For more information about your Embedian products, or for customer service and technical support, contact Embedian directly.

To contact Embedian by	Use
Mail	Embedian, Inc.
	4F-7. 432 Keelung Rd. Sec. 1,
	Taipei 11051, Taiwan
World Wide Web	http://www.embedian.com/
Telephone	+ 886 2 2722 3291

Additional Resources

Please also refer to the most recent Embedian *SMARC T335X* user's manual or TI AM335x processor reference manual and related documentation for additional information.

Chapter

Introduction

This Chapter gives background information on this document.

Section includes :

- Acronyms and Abbreviations Used
- Signal Table Terminology
- Document and Standard References
- Intended Audience

Chapter 1 Introduction

This document is created to guide users to design *SMARC* (formerly ULP-COM) compliant carrier board. It will focus only on the interfaces in *SMARC T335X* pinouts and related peripherals. Some interfaces like camera interface are defined in *SMARC* specification, but not in *SMARC T335X*, will not be addressed in this document. This document should be used in conjunction with the *SMARC T335X* user's manual and *SMART-BEE* carrier schematics.

This document also contains reference schematics for different interfaces. These interfaces are described in the user's manual of *SMARC T335X* module. *SMARC T335X* module does not feature the full set of all interfaces that defined in *SMARC* specification. Therefore, it is strongly recommended to read the user's manual of the *SMARC T335X* modules that are required to be support by the carrier board.

This carrier board hardware design guide for *SMARC T335X* computer on module helps walk hardware designers through the various stages of designing a carrier board on this platform. Using this document, hardware designers can efficiently locate the resources they need at every step in the board design flow.

An evaluation carrier *SMART-BEE* is available for *SMARC T335X* computer on module. *SMART-BEE* has all the interfaces on *SMARC T335X* module in the form of either connectors or pin headers and is a good reference for hardware designers who would like to develop their own carrier boards.

All examples of this document are based on *SMART-BEE* carrier board that is available from Embedian. This document also provides a collection of useful documentation, application reports, and design recommendations.

1.1 Acronyms and Abbreviations Used

Table below shows the acronyms and abbreviations used in this section.

Abbreviation	Explanation
ADC	Analogue to Digital Converter
Auto-MDIX	Automatically Medium Dependent Interface Crossing, a PHY with Auto-MDIX f is able to detect whether RX and TX need to be crossed (MDI or MDIX)
CAN	Controller Area Network, a bus that is manly used in automotive and industrial environment
СРИ	Central Processor Unit
DAC	Digital to Analogue Converter
DDC	Display Data Channel, interface for reading out the capability of a monitor
DSI	Display Serial Interface
EDID	Extended Display Identification Data, timing setting information provided by the display in a PROM
EMI	Electromagnetic Interference, high frequency disturbances
еММС	Embedded Multi Media Card, flash memory combined with MMC interface controller in a BGA package, used as internal flash memory
ESD	Electrostatic Discharge, high voltage spike or spark that can damage electrostatic- sensitive devices
GBE	Gigabit Ethernet, Ethernet interface with a maximum data rate of 1000Mbit/s
GND	Ground
GPIO	General Purpose Input/Output, pin that can be configured being an input or output
HDA	High Definition Audio (HD Audio), digital audio interface between CPU and audio codec
HDMI	High-Definition Multimedia Interface, combines audio and video signal for connecting monitors, TV sets or Projectors, electrical compatible with DVI-D

Abbreviation	Explanation
12C	Inter-Integrated Circuit, two wire interface for connecting low speed peripherals
125	Integrated Interchip Sound, serial bus for connecting PCM audio data between two devices
JTAG	Joint Test Action Group, widely used debug interface
LCD	Liquid Crystal Display
LSB	Least Significant Bit
LVDS	Low-Voltage Differential Signalling, electrical interface standard that can transport very high speed signals over twisted-pair cables. Many interfaces like PCIe or SATA use this interface. Since the first successful application was the Flat Panel Display Link, LVDS became a synonymous for this interface. In this document, the term LVDS is used for the Flat Panel Display Link interface.
MDI	Medium Dependent Interface, physical interface between Ethernet PHY and cable connector
MDIX	Medium Dependent Interface Crossed, an MDI interface with crossed RX and TX interfaces
MSB	Most Significant Bit
МХМЗ	Mobile PCI Express Module (second generation), graphic card standard for mobile device, the SMARC form factor uses the physical connector but not the pin-out and the PCB dimensions of the MXM3 standard.
N/A	Not Available
N/C	Not Connected
OD	Open Drain
OTG	USB On-The-Go, a USB host interface that can also act as USB client when connected to another host interface
РСВ	Printed Circuit Board
PD	Pull Down Resistor

Abbreviation	Explanation
РНҮ	Physical Layer of the OSI model
PMIC	Power Management IC, integrated circuit that manages amongst others the power sequence of a system
PU	Pull Up Resistor
РШМ	Pulse-Width Modulation
RGB	Red Green Blue, colour channels in common display interfaces
RJ45	Registered Jack, common name for the 8P8C modular connector that is used for Ethernet wiring
R5232	Single ended serial port interface
R5422	Differential signaling serial port interface, full duplex
RS485	Differential signaling serial port interface, half duplex, multi drop configuration possible
SD	Secure Digital, flash memory card
SDIO	Secure Digital Input Output, an external bus for peripherals that uses the SD interface
SOC	System on a Chip, IC which integrates the main component of a computer on a single chip
SPI	Serial Peripheral Interface Bus, synchronous four wire full duplex bus for peripherals
TVS Diode	Transient-Voltage-Suppression Diode, diode that is used to protect interfaces against voltage spikes
UART	Universal Asynchronous Receiver/Transmitter, serial interface, in combination with a transceiver a RS232, RS422, RS485, IrDA or similar interface can be achieved
USB	Universal Serial Bus, serial interface for internal and external peripherals
VDD	Positive supply voltage
VGA	Video Graphics Array, analogue video interface for monitors

1.2 Signal Table Terminology

Table below describes the terminology used in this section for the Signal Description tables.

The "#" symbol at the end of the signal name indicates that the active or asserted state occurs when the signal is at a low voltage level. When "#" is not present, the signal is asserted when at a high voltage level.

Direction	Type / Tolerance	Notes
Input		Input to the Module
Output		Output from the Module
Output OD		Open drain output from the Module
Bi-Dir		Bi-directional signal (can be input or output)
Bi-Dir OD		Bi-directional signal; output from the Module is open drain
	VDD_IN	Signal may be exposed to Module input voltage range (3.35 to 5.25V)
	CMOS 1.8V	CMOS logic input and / or output, 1.8V I/O supply level or tolerance
	CMOS 3.3V	CMOS logic input and / or output, 3.3V I/O supply level or tolerance
	CMOS VDD_IO	CMOS logic I/O level – set to 3.3V for SMATC T335X Modules
	CMOS VDD_JTAG_IO	VDD_JTAG_IO is 3.3V in SMARC T335X. The JTAG emulator adjusts to the VDD_JTAG_IO level provided by the Module, on the JTAG connector
	GBE MDI	Differential analog signaling for Gigabit Media Dependent Interface
	LVDS AFB	LVDS signaling for AFB – may be PCIe, SATA, USB SS, GBE MDI, MLB or other low voltage high speed differential physical interface

Direction	Type / Tolerance	Notes
	LVDS LCD	LVDS signaling used for LVDS LCD displays
	USB	DC coupled differential signaling used for traditional (non- Super-Speed) USB signals
	USB SS	LVDS signaling used for Super Speed USB 3.0
	USB VBUS 5V	5V tolerant input for USB VBUS detection
	10/100Base-TX	Differential signaling, using MLT-3 (tri level) format for 100 MBit / Sec full duplex Ethernet
	REF	Reference voltage output. May be sourced from a Module power plane.
	PDS	Pull-down strap. A Module output pin that is either tied to GND or is not connected. Used to signal Module capabilities (pin-out type) to the Carrier Board.
	Р	Power input/output

Schematic examples are drawn with signal directions shown per the figure below. Nets that connect to the *SMARC* Module are named per the *SGET SMARC* specification.

Figure 1: Schematic Conventions

Power nets are labeled per the table below. The power rail behavior under the various system power states is shown in the table.

Term	S0	S3	S4	S5	G3
	On	Suspend to RAM	Suspend to Disk	Soft Off	Mechanical Off
VDD_IN	3.35V~5.25 V	3.35V~5.25 V	3.35V~5.25 V	3.35V~5.25 V	Off
VDD_50	5V	Off	Off	Off	Off
VDD_33	3.3V	Off	Off	Off	Off
AUD_33	3.3V	Off	Off	Off	Off
VDD_18	1.8V	Off	Off	Off	Off
VDD_RTC	3.0V	3.0V	3.0V	3.0V	3.0V

1.3 Document and Standard References

1.3.1. External Industry Standard Documents

- **The I2C Specification,** Version 2.1, January 2000, Philips Semiconductor (now NXP) (<u>www.nxp.com</u>).
- *I2S Bus Specification,* Feb. 1986 and Revised June 5, 1996, Philips Semiconductor (now NXP) (www.nxp.com).
- MXM3 Graphics Module Mobile PCI Express Module Electromechanical Specification, Version 3.0, Revision 1.1, © 2009 NVIDIA Corporation (www.mxm-sig.org).
- **PICMG® EEEP Embedded EEPROM Specification,** Rev. 1.0, August 2010 (www.picmg.org).
- SD Specifications Part 1 Physical Layer Simplified Specification, Version 3.01, May 18, 2010, © 2010 SD Group and SD Card Association (Secure Digital) (<u>www.sdcard.org</u>).
- SPI Bus "Serial Peripheral Interface" de-facto serial interface standard defined by Motorola. A good description may be found on Wikipedia

(http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus).

• USB Specifications (www.usb.org).

1.3.2. SGET Documents

• *SMARC_Hardware_Specification_V1p0*, version 1.0, December 20, 2012.

1.3.3. Embedian Documents

The following documents are listed for reference. The Module schematic is not usually available outside of Embedian, without special permission. The other schematics may be available, under NDA or otherwise. Contact your Embedian representative for more information. The *SMARC T335X* Evaluation Carrier schematic is particularly useful as an example of the implementation of various interfaces on a Carrier board.

- SMARC_T335X Evaluation Carrier Board Schematic, PDF and OrCAD format
- SMARC_T335X Evaluation Carrier Board User's Manual
- SMARC_T335X Carrier Board Hardware Design Guide
- SMARC_T335X Carrier Board Hardware Layout Guide

- SMARC_T335X User's Manual
- SMARC_T335X Schematic Checklist

1.3.4. TI Documents

- AM335x ARM Cortex-A8 Microprocessors (MPUs), April 15 2013 (rev.
 F)
- AM335x Schematic Checklist, Oct 31 2011
- AM335x ARM Cortex-A8 Microprocessors (MPUs) Technical References Manual, April 15 2013 (rev. H)
- AM335x Power Consumption Summary, Oct 31 2011

1.3.5. TI Development Tools

- Pin Mux Utility for ARM® Microprocessors
- Power Estimation Tool (PET)

1.3.6. TI Software Documents

- LINUXEZSDK-AM335x
- ANDROIDDEVKIT-JB-AM335x

1.3.7. Embedian Software Documents

- Embedian Linux BSP for SMARC T335X Module
- Embedian Android BSP for SMARC T335X Module
- Embedian Linux BSP User's Guide
- Embedian Android BSP User's Guide

1.3.8. TI Design Network

- Beaglebone
- Adeneo Embedded (Windows Embedded Compact 7)
- Nucleus
- QNX

1.4 Intended Audience

This design guide is intended for electronics engineers and PCB layout engineers designing Carrier Boards for *SMARC T335X* Modules.

Chapter

Interfaces

This chapter describes the signals and implementation guideline found on *SMARC* T335X connectors.

Section includes :

- SMARC T335X Connector Pin Mapping
- Ethernet Interface
- USB Interface
- Parallel RGB LCD Interface
- SD/SDIO Interface
- I2C Audio Interface
- CAN BUS Interface
- Serial COM Port Interface
- SPI Interface
- I2C BUS Interface
- Selecting the Boot Mode
- Watchdog Control Signals

Chapter 2 Interfaces

There are 314 edge fingers of the *SMARC* module that mate with a low profile 314 pin 0.5mm pitch right angle connector (the connector is sometimes identified as a 321 pin connector, but 7 pins are lost to the key). The following table lists the module pin assignments for all 314 edge fingers.

P-Pin	Primary (Top) Side	S-Pin	Secondary (Bottom) Side
		S1	PCAM_VSYNC
P1	PCAM_PXL_CK1	S2	PCAM_HSYNC
P2	GND	S3	GND
P3	CSI1_CK+ / PCAM_D0	S4	PCAM_PXL_CK0
P4	CSI1_CK- / PCAM_D1	S5	I2C_CAM_CK
P5	PCAM_DE	S6	CAM_MCK
P6	PCAM_MCK	S7	I2C_CAM_DAT
P7	CSI1_D0+ / PCAM_D2	S8	CSI0_CK+ / PCAM_D10
P8	CSI1_D0- / PCAM_D3	S9	CSI0_CK- / PCAM_D11
P9	GND	S10	GND
P10	CSI1_D1+/PCAM_D4	S11	CSI0_D0+ / PCAM_D12
P11	CSI1_D1- / PCAM_D5	S12	CSI0_D0- / PCAM_D13
P12	GND	S13	GND
P13	CSI1_D2+/PCAM_D6	S14	CSI0_D1+ / PCAM_D14
P14	CSI1_D2-/PCAM_D7	S15	CSI0_D1-/PCAM_D15
P15	GND	S16	GND
P16	CSI1_D3+ / PCAM_D8	S17	AFB0_OUT
P17	CSI1_D3- / PCAM_D9	S18	AFB1_OUT
P18	GND	S19	AFB2_OUT
P19	GBE_MDI3-	S20	AFB3_IN

P-Pin	Primary (Top) Side	S-Pin	Secondary (Bottom) Side
P20	GBE_MDI3+	S21	AFB4_IN
P21	GBE_LINK100#	S22	AFB5_IN
P22	GBE_LINK1000#	S23	AFB6_PTIO
P23	GBE_MDI2-	S24	AFB7_PTIO
P24	GBE_MDI2+	S25	GND
P25	GBE_LINK_ACT#	S26	SDMMC_D0
P26	GBE_MDI1-	S27	SDMMC_D1
P27	GBE_MDI1+	S28	SDMMC_D2
P28	GBE_CTREF	S29	SDMMC_D3
P29	GBE_MDI0-	S30	SDMMC_D4
P30	GBE_MDI0+	S31	SDMMC_D5
P31	SPI0_CS1#	S32	SDMMC_D6
P32	GND	S33	SDMMC_D7
P33	SDIO_WP	S34	GND
P34	SDIO_CMD	S35	SDMMC_CK
P35	SDIO_CD#	S36	SDMMC_CMD
P36	SDIO_CK	S37	SDMMC_RST#
P37	SDIO_PWR_EN	S38	AUDIO_MCK
P38	GND	S39	I2S0_LRCK
P39	SDIO_D0	S40	I2S0_SDOUT
P40	SDIO_D1	S41	I2S0_SDIN
P41	SDIO_D2	S42	I2S0_CK
P42	SDIO_D3	S43	I2S1_LRCK
P43	SPI0_CS0#	S44	I2S1_SDOUT
P44	SPI0_CK	S45	I2S1_SDIN

P-Pin	Primary (Top) Side	S-Pin	Secondary (Bottom) Side
P45	SPI0_DIN	S46	I2S1_CK
P46	SPI0_DO	S47	GND
P47	GND	S48	I2C_GP_CK
P48	SATA_TX+	S49	I2C_GP_DAT
P49	SATA_TX-	S50	I2S2_LRCK
P50	GND	S51	I2S2_SDOUT
P51	SATA_RX+	S52	I2S2_SDIN
P52	SATA_RX-	S53	I2S2_CK
P53	GND	S54	SATA_ACT#
P54	SPI1_CS0#	S55	AFB8_PTIO
P55	SPI1_CS1#	S56	AFB9_PTIO
P56	SPI1_CK	S57	PCAM_ON_CSI0#
P57	SPI1_DIN	S58	PCAM_ON_CSI1#
P58	SPI1_DO	S59	SPDIF_OUT
P59	GND	S60	SPDIF_IN
P60	USB0+	S61	GND
P61	USB0-	S62	AFB_DIFF0+
P62	USB0_EN_OC#	S63	AFB_DIFF0-
P63	USB0_VBUS_DET	S64	GND
P64	USB0_OTG_ID	S65	AFB_DIFF1+
P65	USB1+	S66	AFB_DIFF1-
P66	USB1-	S67	GND
P67	USB1_EN_OC#	S68	AFB_DIFF2+
P68	GND	S69	AFB_DIFF2-
P69	USB2+	S70	GND

P-Pin	Primary (Top) Side	S-Pin	Secondary (Bottom) Side
P70	USB2-	S71	AFB_DIFF3+
P71	USB2_EN_OC#	S72	AFB_DIFF3-
P72	PCIE_C_PRSNT#	S73	GND
P73	PCIE_B_PRSNT#	S74	AFB_DIFF4+
P74	PCIE_A_PRSNT#	S75	AFB_DIFF4-
	<key></key>		<key></key>
P75	PCIE_A_RST#	S76	PCIE_B_RST#
P76	PCIE_C_CKREQ#	S77	PCIE_C_RST#
P77	PCIE_B_CKREQ#	S78	PCIE_C_RX+
P78	PCIE_A_CKREQ#	S79	PCIE_C_RX-
P79	GND	S80	GND
P80	PCIE_C_REFCK+	S81	PCIE_C_TX+
P81	PCIE_C_REFCK-	S82	PCIE_C_TX-
P82	GND	S83	GND
P83	PCIE_A_REFCK+	S84	PCIE_B_REFCK+
P84	PCIE_A_REFCK-	S85	PCIE_B_REFCK-
P85	GND	S86	GND
P86	PCIE_A_RX+	S87	PCIE_B_RX+
P87	PCIE_A_RX-	S88	PCIE_B_RX-
P88	GND	S89	GND
P89	PCIE_A_TX+	S90	PCIE_B_TX+
P90	PCIE_A_TX-	S91	PCIE_B_TX-
P91	GND	S92	GND
P92	HDMI_D2+	S93	LCD_D0
P93	HDMI_D2-	S94	LCD_D1

P-Pin	Primary (Top) Side	S-Pin	Secondary (Bottom) Side
P94	GND	S95	LCD_D2
P95	HDMI_D1+	S96	LCD_D3
P96	HDMI_D1-	S97	LCD_D4
P97	GND	S98	LCD_D5
P98	HDMI_D0+	S99	LCD_D6
P99	HDMI_D0-	S100	LCD_D7
P100	GND	S101	GND
P101	HDMI_CK+	S102	LCD_D8
P102	HDMI_CK-	S103	LCD_D9
P103	GND	S104	LCD_D10
P104	HDMI_HPD	S105	LCD_D11
P105	HDMI_CTRL_CK	S106	LCD_D12
P106	HDMI_CTRL_DAT	S107	LCD_D13
P107	HDMI_CEC	S108	LCD_D14
P108	GPIO0 / CAM0_PWR#	S109	LCD_D15
P109	GPIO1 / CAM1_PWR#	S110	GND
P110	GPIO2 / CAM0_RST#	S111	LCD_D16
P111	GPIO3 / CAM1_RST#	S112	LCD_D17
P112	GPIO4 / HDA_RST#	S113	LCD_D18
P113	GPIO5 / PWM_OUT	S114	LCD_D19
P114	GPIO6 / TACHIN	S115	LCD_D20
P115	GPIO7 / PCAM_FLD	S116	LCD_D21
P116	GPIO8 / CAN0_ERR#	S117	LCD_D22
P117	GPIO9 / CAN1_ERR#	S118	LCD_D23
P118	GPIO10	S119	GND

P-Pin	Primary (Top) Side	S-Pin	Secondary (Bottom) Side
P119	GPIO11	S120	LCD_DE
P120	GND	S121	LCD_VS
P121	I2C_PM_CK	S122	LCD_HS
P122	I2C_PM_DAT	S123	LCD_PCK
P123	BOOT_SEL0#	S124	GND
P124	BOOT_SEL1#	S125	LVDS0+
P125	BOOT_SEL2#	S126	LVDS0-
P126	RESET_OUT#	S127	LCD_BKLT_EN
P127	RESET_IN#	S128	LVDS1+
P128	POWER_BTN#	S129	LVDS1-
P129	SER0_TX	S130	GND
P130	SER0_RX	S131	LVDS2+
P131	SER0_RTS#	S132	LVDS2-
P132	SER0_CTS#	S133	LCD_VDD_EN
P133	GND	S134	LVDS_CK+
P134	SER1_TX	S135	LVDS_CK-
P135	SER1_RX	S136	GND
P136	SER2_TX	S137	LVDS3+
P137	SER2_RX	S138	LVDS3-
P138	SER2_RTS#	S139	I2C_LCD_CK
P139	SER2_CTS#	S140	I2C_LCD_DAT
P140	SER3_TX	S141	LCD_BKLT_PWM
P141	SER3_RX	S142	LCD_DUAL_PCK
P142	GND	S143	GND
P143	CAN0_TX	S144	RSVD / EDP_HPD

P-Pin	Primary (Top) Side	S-Pin	Secondary (Bottom) Side
P144	CAN0_RX	S145	WDT_TIME_OUT#
P145	CAN1_TX	S146	PCIE_WAKE#
P146	CAN1_RX	S147	VDD_RTC
P147	VDD_IN	S148	LID#
P148	VDD_IN	S149	SLEEP#
P149	VDD_IN	S150	VIN_PWR_BAD#
P150	VDD_IN	S151	CHARGING#
P151	VDD_IN	S152	CHARGER_PRSNT#
P152	VDD_IN	S153	CARRIER_STBY#
P153	VDD_IN	S154	CARRIER_PWR_ON
P154	VDD_IN	S155	FORCE_RECOV#
P155	VDD_IN	S156	BATLOW#
		S158	VDD_IO_SEL#

Note:

The text in grey represents the signals defined in *SMARC* specification, but not implemented in *SMARC* T335X.

The text in yellow represents the signals shared with *RMII*2 signals and default are configured as *LAN*2 function. Please see "*Power Management Signals*" in section 3.1.3.

The following figures show the connector schematics.

Figure 2: SMARC T335X Connector Schematics I

Figure 3: SMARC T335X Connector Schematics II

2.1 SMARC T335X Connector Pin Mapping

The diagrams in the figures below show the pin numbering schema on both sides of the module and land pattern.

The schema deviates from the unrelated *MXM3* standard pin numbering schema and is compliant to *SMARC* specification version 1.0.

Pins on the primary (top) side of the module have a label "P" and pins on the secondary (bottom) side have a label "S".

Pins which do not exist due to the connector notch are not accounted for (pins P74 through P75 and S75 through S76).

Figure 4: SMARC T335X edge finger primary pins

Figure 5: SMARC T335X edge finger secondary pins

Module Insertion Edge

The rest of the sections in this chapter describe the signals on *SMARC MXM3* connector that is provided over the edge-fingers of the *SMARC* module. Refer to the *SMARC* Specification for information about this.

The "#" symbol at the end of the signal name indicates that the active or asserted state occurs when the signal is at a low voltage level. When "#" is not present, the signal is asserted when at a high voltage level. Differential pairs are indicated by trailing '+' and '-' signs for the positive or negative signal.

2.2 Ethernet Interface

SMARC hardware specification defines one *10/100/1000BaseT* Gigabit Ethernet *LAN* port compliant with the IEEE 802.3ab standard and the other optional one in the Alternate Function Block (AFB). The interface is backward compatible with the *10/100Mbit* Ethernet (*10/100Base-TX*) standard.

The *LAN* interface of the *SMARC* module consists of 4 pairs of low voltage differential pair signals designated from '*GBE_MDI0*' (+ and -) to '*GBE_MDI3*' (+ and -) plus additional control signals for link activity indicators. These signals can be used to connect a *10/100/1000BaseT* RJ45 connector with integrated or external isolation magnetics to the carrier board.

SMARC T335X module equips with two Fast Ethernet interfaces (*10/100Base-TX*) that uses the *MDI0* as transmitting lanes and the *MDI1* as receiving lane. The *MDI2* and *MDI3* lanes are not used and are left unconnected. Develops could also implement *MDI2* and *MDI3* lanes if they would like their carrier board to support *SMARC* modules that has Gigabit Ethernet *LAN*. This will add some additional costs.

2.2.1. Ethernet Signal

The following table shows the Ethernet signals of LAN1.

SMARC Edge Finger		I/O	Туре	Power Poil	Description
Pin#	Pin Name			Nali	
P30	GBE_MDI0+	10	Analogue		1000Base-T: DA+
					10/100Base-TX: Transmit +
P29	GBE_MDI0-	10	Analogue		1000Base-T: DA-
					10/100Base -TX: Transmit -
P27	GBE_MDI1+	10	Analogue		1000Base-T: DB+
					10/100Base -TX: Receive +
P26	GBE_MDI1-	10	Analogue		1000Base-T: DB-
					10/100Base -TX: Receive -
P24	GBE_MDI2+	10	Analogue		1000Base-T: DC+
					10/100Base -TX: Unused
P23	GBE_MDI2-	10	Analogue		1000Base-T: DC-
					10/100Base -TX: Unused
P20	GBE_MDI3+	10	Analogue		1000Base-T: DD+
					10/100Base -TX: Unused
P19	GBE_MDI3-	10	Analogue		1000Base-T: DD-
					10/100Base -TX: Unused
P28	GBE_CTREF	0	Analogue		Centre tap supply
P25	GBE_LINK_ACK#	OD	CMOS	3.3V	LED indication output for activity on the Ethernet port
P21	GBE_LINK100#	OD	CMOS	3.3V	LED link speed indication output for 100Mbps established Ethernet link
P22	GBE_LINK1000#	OD	CMOS	3.3V	1000Base-T: LED link speed indication output for 1000Mbps established Ethernet link
					10/100Base -TX: Unused

SMARC Edge Finger		I/O	Туре	Power	Description
Pin#	Pin Name			Rall	
S62	AFB_DIFF0+ (GBE1_MDI0+)	10	Analogue		1000Base-T: DA+
S63	AFB_DIFF0- (GBE1_MDI0-)	10	Analogue		10/100Base-T: DA-
S65	AFB_DIFF1+ (GBE1_MDI1+)	10	Analogue		10/100Base-T: DB+
S66	AFB_DIFF1- (GBE1_MDI1-)	10	Analogue		10/100Base-T: DB-
S68	AFB_DIFF2+ (GBE1_MDI2+)	10	Analogue		10/100Base - TX: Receive - 1000Base-T: DC+
S69	AFB_DIFF2- (GBE1_MDI2-)	10	Analogue		10/100Base - TX: Unused 1000Base-T: DC-
S71	AFB_DIFF3+ (GBE1_MDI3+)	10	Analogue		10/100Base -TX: Unused
S72	AFB_DIFF3- (GBE1_MDI3-)	10	Analogue		10/100Base-T: DD-
S17	AFB0_OUT (GBE1_CTREF)	0	Analogue		Centre tap supply
S55	AFB8_PTIO (GBE1_LINK_ACK#)	OD	CMOS	3.3V	LED indication output for activity on the Ethernet port
S23	AFB6_PTIO (GBE1_LINK100#)	OD	CMOS	3.3V	LED link speed indication output for 100Mbps established Ethernet link
S24	AFB7_PTIO (GBE1_LINK1000#)	OD	CMOS	3.3V	1000Base-T: LED link speed indication output for 1000Mbps established Ethernet link

The following table shows the Ethernet signals of LAN2.

2.2.2. LAN Implementation Guidelines

The most critical component in the *LAN* interface is the isolation magnetics connected directly to the *MDI* differential pair signals of the *SMARC* module. It should be carefully qualified for Return Loss, Insertion Loss, Open Circuit Inductance, Common Mode Rejection and Crosstalk Isolation to pass the IEEE conformance tests and *EMI* tests.

Even if a *SMARC* module complies with the basic specifications set forth for IEEE certification, it's still possible that the overall system could fail IEEE testing because of a poor quality or unsuitable external isolation magnetics module and/or improper PCB layout of the carrier board.

Ethernet connectors with integrated magnetics are preferable. If a design with external magnetics is chosen, additional care has to be taken to route the signals between the magnetics and Ethernet connector. If only Fast Ethernet (100Mbit/s) is required, some design cost may be saved by using only *10/100Base-TX* magnetics.

The Ethernet *MDI* signals are analogue differential pair signals which need to be routed carefully.

Try to keep the *MDI* signals as short as possible and keep them away from digital signals. Try to avoid any stubs on these signals.

The LED output signals *GBE_LINK_ACT#*, *GBE_LINK100#* and *GBE_LINK1000#* can be connected directly to the LED of the Ethernet jack with suitable serial resistors. There is no need for additional buffering if the current draw does not exceed 10mA.

2.2.2.1. Gigabit Ethernet LAN Magnetics Modules

1000Base-T Ethernet magnetics modules are similar to those designed solely for 10/100Base-Tx Ethernet, except that there are four *MDI* differential signal pairs instead of two.

1000Base-T magnetics modules have a center tap pin that is connected to the reference voltage output '*GBE_CTREF* of the *SMARC* module, which biases the controller's output buffers. Magnetics with four center tap pins may have better characteristics than those with one or two center tap pins. The isolation magnetics can be integrated in a RJ45 jack, which also provides activity and speed LED indicators. Alternatively, they can be designed as discrete magnetics modules, which will be connected to a pure RJ45 jack. The following table lists recommended magnetics modules and RJ45 jacks for usage on a carrier board design.

1000Mbps Ethernet LAN Magnetics							
Recommended	Recommended Magnetics						
Vendor	Part Number	Technology	Comments				
Pulse	H5007	10/100/1000BaseT	Discrete magnetics module				
Engineering							
Pulse	JK0-0036	10/100/1000BaseT	RJ45 jack with integrated				
Engineering			magnetics and activity LEDs				
Bel Fuse	S558-5999-P3	10/100/1000BaseT	Discrete magnetics module				
Pulse	JW0A1P01R-E	10/100/1000BaseT	RJ45 jack with integrated				
			magnetics and USB jacks				
Foxconn	UB11123-J51	10/100/1000BaseT	RJ45 jack with integrated				
			magnetics and USB jacks				
2.2.2.2. Fast Ethernet (10/100Mbps) LAN Magnetics Modules

SMARC T335X uses SMSC *LAN8720A* as *LAN PHY* layer chip. The following table is the magnetic sources that are qualified or suggested by SMSC. The manufacturer, part number, package, number of cores, operating temperature range and configuration are included for each suggested magnetic.

	SMARC T335X (LAN8720)									
Qualified Magnetics										
Vendor	Part Number	Package	Core	Тетр	Configuration					
Pulse	H1122	16-pin SOIC	4	0° ~70°C	HP Auto-MDIX					
Halo	TG110-RP55N5	16-pin SOIC	4	0° ~70°C	HP Auto-MDIX					
Halo	HFJ11-RP26E-L12RL	Integrated RJ45	4	0° ~70°C	HP Auto-MDIX POE					
Delta	RJSE1R5310A	Integrated RJ45		0° ~70°C	HP Auto-MDIX					
Suggested I	Magnetics									
Pulse	J0011D01B	Integrated RJ45	4	0° ~70°C	HP Auto-MDIX					
Midcom	000-7219-35	Cardbus	4	0° ~70°C	HP Auto-MDIX					
Bothhand	TS6121C	16-pin SOIC	4	0° ~70°C	HP Auto-MDIX					
Bothhand	LU1S041X-43	Integrated RJ45	4	0° ~70°C	HP Auto-MDIX					

Table 10/100Mbps Magnetic Sources

SMARC T335x Carrier Board Hardware Design Guide, Document Revision 1.3

SMARC T335X-I (LAN8720i)										
Qualified N	Qualified Magnetics									
Vendor	Part Number	Package	Core	Temp	Configuration					
Pulse	HX1188	16-pin SOIC	4	-40° ~85°C	HP Auto-MDIX					
Halo	TG110-RPE5N5	16-pin SOIC	4	-40° ~85°C	HP Auto-MDIX					
Halo	HFJ11-RPE26E-L12RL	Integrated RJ45	4	-40° ~85°C	HP Auto-MDIX POE					
TDK	TLA-6T717W	Integrated RJ45	4	-40° ~85°C	HP Auto-MDIX					
Delta	LFE-8505T	16-pin SOIC	4	-40° ~85°C	HP Auto-MDIX					

Above are magnetics for normal temperature. For industrial temperature magnetics are listed below.

2.2.2.3. LAN Component Placement

When using RJ45 connectors without integrated magnetics, the discrete magnetics module has to be placed as close as possible to the RJ45 connector. The distance between the magnetics module and RJ45 connector must be less than 1 inch. This distance requirement must be observed during the carrier board layout when implementing *LAN*. Due to the insertion loss budget of *SMARC*, the overall trace length of the *MDI* signal pairs on the carrier board should be less than 4 inches. Signal attenuation could cause data transfer problems for traces longer than 4 inches.

2.2.2.4. LAN Ground Plane Separation

Isolated separation between the analog ground plane and digital ground plane is recommended. If this is not implemented properly then bad ground plane partitioning could cause serious *EMI* emissions and degrade analog performance due to ground bounce noise.

The plane area underneath the magnetic module should be left empty. This free area is to keep transformer induced noise away from the power and system ground planes.

The isolated ground, also called chassis ground, connects directly to the fully shielded RJ45 connector. For better isolation it is also important to maintain a gap between chassis ground and system ground that is wider than 60mils. For *ESD* protection, a 3kV high voltage capability capacitor is recommended to connect to this chassis ground.

Additionally, a ferrite bead can be placed parallel to the capacitor.

S: Ground Plane Seperation

Figure 7: LAN Ground Plane Separation

2.2.2.5. LAN Link Activity and Speed LED

The *SMARC* module has three 3.3V open drain outputs to speed indication and link status LEDs. The 3.3V standby voltage should be used as LED supply voltage so that the link activity can be viewed during system standby state. Since LEDs are likely to be integrated into a RJ45 connector with integrated magnetics module, the LED traces need to be routed away from potential sources of *EMI* noise.

Consider adding a filtering capacitor per LED for extremely noisy situations. The suggested value for this capacitor is 470pF.

2.2.3. LAN Reference Schematic

2.2.3.1. Gigabit Ethernet Schematic Example (Integrated Magnetics)

The need for centre tap voltage depends on the Ethernet *PHY* used on the *SMARC* module. In order to keep the carrier board compatible with all *SMARC* modules, the centre tap pins of the magnetics should all be connected to the centre tap voltage source pin of the module connector (*GBE_CTREF*). Please add a ferrite bead and capacitors according to the reference schematic.

Figure 8: Gigabit Ethernet with Integrated Magnetics Reference Schematic

SMARC T335x Carrier Board Hardware Design Guide, Document Revision 1.3

2.2.3.2. Gigabit Ethernet Schematic Example (Discrete Magnetics)

If discrete magnetics are used instead of a RJ-45 Ethernet jack with integrated magnetics, special care has to be taken to route the signals between the magnetics and the jack. These signals are required to be high voltage isolated from the other signals. It is therefore necessary to place a dedicated ground plane under these signals which has a minimum separation of 2mm from every other signal and plane. Additionally, a separate shield ground for the *LAN* device is needed. Try to place the magnetics as close as possible to the Ethernet jack. This reduces the length of the signal traces between the magnetics and jack.

Figure 9: Separation of Magnetics Ground

Figure 10: Gigabit Ethernet with Discrete Magnetics Reference Schematic

2.2.3.3. 10/100Mbit Ethernet Schematic Example (Integrated Magnetics)

The Fast Ethernet interface uses the *MDI0* as transmitting lanes and the *MDI1* as receiving lane. As most Ethernet *PHYs* feature Auto-MDIX, the signal direction RX and TX could be swapped. It is strongly recommend that RX and TX lanes are not swapped in order to ensure compatibility between all *SMARC* modules.

The *MDI2* and *MDI3* lanes are not used for the *10/100Base-TX* interface. These signals can be left unconnected.

Most of the Fast Ethernet *PHYs* do not need a centre tap voltage. Even so, it is recommend the centre tap pins of the magnetics are connected to the centre tap source pin of the *SMARC* module connector.

Figure 11: Fast Ethernet with Integrated Magnetics Reference Schematic

2.2.4. Unused Ethernet Signals Termination

All unused Ethernet signals can be left unconnected.

2.3 USB Interface

The Universal Serial Bus interface of the *SMARC* module is compliant to USB 2.0 and backward compatible to USB 1.1 specification. *SMARC* specifies a minimum configuration of 1 USB client port that can be configured as host port or *OTG* port, and a minimum configuration of 1 USB host port up to a maximum of 2 ports. USB Port0 can be optionally configured to be used as a USB host port or *OTG* port.

SMARC T335X has one USB 2.0 client port (*USB0*) that can be configured as a host port or OTG port, and one USB 2.0 host port (*USB1*). Port *USB2* is unused.

2.3.1. USB Signal

The following table shows the USB signals of USB0.

SMAR	C Edge Finger	I/O	Туре	Power Pail	Description	
Pin#	Pin Name			Nan		
P60	USB0+	10	USB	3.3V	Positive differential USB signal, OTG capable	
P61	USB0-	10	USB	3.3V	Negative differential USB signal, OTG capable	
P62	USB0_EN_OC#	10	OD	3.3V	Enable signal for the bus voltage output in host mode and Over current input signal for the USB0 interface Pulled low by Module OD driver to disable USB0 power Pulled low by Carrier OD driver to	
					indicate over-current situation If this signal is used, a pull-up is required on the Carrier	
P63	USB0_VBUS_DET	1	CMOS	3.3V/ 5V tolerant	Bus voltage detection in the OTG client mode	
P64	USB0_OTG_ID	1	CMOS	3.3V	Cable identification pin for the OTG	

SMARC T335x Carrier Board Hardware Design Guide, Document Revision 1.3

The table below shows the USB signals of USB1.
--

SMAR	C Edge Finger	I/O Type Pow Boil		Power Pail	Description
Pin#	Pin Name			Ναιι	
P65	USB1+	10	USB	3.3V	Positive differential USB signal, OTG capable
P66	USB1-	10	USB	3.3V	Negative differential USB signal, OTG capable
P67	USB1_EN_OC#	10	OD	3.3V	Enable signal for the bus voltage output in host mode and Over current input signal for the USB0 interface
					Pulled low by Module OD driver to disable USB0 power
					Pulled low by Carrier OD driver to indicate over-current situation
					<i>If this signal is used, a pull-up is required on the Carrier</i>

Port USB2 is not used in T335X.

SMARC	Edge Finger	I/O	Туре	Power Rail	Description
Pin#	Pin Name			, tan	
P69	USB1+				Not used
P70	USB1-				Not used
P71	USB1_EN_OC#				Not used

2.3.2. USB Implementation Guidelines

2.3.2.1. USB Over-Current Protection and Power Enable Signal (USB_EN_OC#)

The USB Specification describes power distribution over the USB port, which supplies power for USB devices that are directly connected to the carrier board. Therefore, the host must implement over-current protection on the ports for safety reasons. Should the aggregate current drawn by the downstream ports exceed a permitted value, the over-current protection circuit removes power from all affected downstream ports. The over-current limiting mechanism must be resettable without user mechanical intervention. For more detailed information about this subject refer to the 'Universal Serial Bus Specifications Revision 2.0', which can be found at <u>http://www.usb.org</u>.

Over-current protection for USB ports can be implemented by using power distribution switches on the carrier board that monitors the USB port power lines. Power distribution switches usually have a soft-start circuitry that minimizes inrush current in applications where highly capacitive loads are employed. Transient faults are internally filtered. Additionally, they offer a fault status output that is asserted during over-current and thermal shutdown conditions. These outputs should be connected to the corresponding *SMARC* module's USB over-current sense signals.

Carrier Board USB peripherals that are not removable often do not make use of USB power switches with current limiting and over-current detection. It is usually deemed un-necessary for non-removable devices. In these cases, the USBx_EN_OC# pins may be left unused, or they may be used as USBx power enables, without making use of the over-current detect Module input feature.

Usually, the Module *USBx_EN_OC#* pins (where 'x' is 0 or 1 for use with *USB0* or *USB1*) are multi-function Module pins, with a 10k pull-up to a 3.3V rail on the Module, an OD driver on the Module, and, if the *OC#* (over-current) monitoring function is implemented on the Carrier, an OD driver on the Carrier. However, TI Sitara AM335X does not require pull up on *USBx_EN_OC#* pins. The use is as follows:

On the Carrier board, for external plug-in USB peripherals (USB memory sticks, cameras, keyboards, mice, etc.) USB power distribution is typically handled by USB power switches such as the Texas Instruments *TPS2052B* or the Micrel *MIC2026-1* or similar devices. The Carrier implementation is more straightforward if the SMARC T335x Carrier Board Hardware Design Guide, Document Revision 1.3

Carrier USB power switches have active-high power enables and active low open drain *OC*# outputs (as the TI and Micrel devices referenced do). The USB power switch Enable and *OC*# pins for a given USB channel are tied together on the Carrier. The USB power switch enable pin must function with a low input current. The TI and Micrel devices referenced above require 1 microampere or less, at a 3.3V enable voltage level.

Figure 12: USB_EN_OC# and USB Power Switch Block Diagram

2) The Module floats USBx_EN_OC# to enable power delivery. Usually, the line is pulled to 3.3V by the Module pull-up, enabling the Carrier board USB power switch. Ti Sitara AM335x does not need the pull-ups. The Carrier board USB power switch, if present, is enabled by USBx_EN_OC# (drvvbus) after a device connection is detected on the

SMARC T335x Carrier Board Hardware Design Guide, Document Revision 1.3

DP/DM lines.

- 3) If there is a USB over-current condition, the Carrier board USB power switch drives the USBx_EN_OC# line low. This removes the over-current condition (by disabling the USB switch enable input), and allows Module software to detect the over-current condition.
- 4) The Module software will look for a falling edge interrupt on USBx_EN_OC# to detect the OC# condition. The OC# condition will not last long, as the USB power switch is disabled when the switch IC detects the OC# condition.

2.3.2.2. EMI/ESD Protection

To improve the *EMI* behavior of the USB interface, a design should include common mode chokes, which have to be placed as close as possible to the USB connector signal pins. Common mode chokes can provide required noise attenuation but they also distort the signal quality of full-speed and high-speed signaling. Therefore, common mode chokes should be chosen carefully to meet the requirements of the *EMI* noise filtering while retaining the integrity of the USB signals on the carrier board design.

To protect the USB host interface of the module from over-voltage caused by electrostatic discharge (*ESD*) and electrical fast transients (*EFT*), it is highly recommended to use low capacitance steering diodes and transient voltage suppression diodes that must be implemented on the carrier board (for example *PACDN006MR ESD* Suppressor from On Semiconductor or *SR05* RailClamp®' surge rated diode arrays from Semtech, <u>http://semtech.com</u>).

Figure 13: USB EMI/ESD Protection

2.3.2.3. USB Client Considerations

Precautions at the carrier board level must be taken to protect against voltage spikes and *ESD* to ensure robust operation of the host detection circuitry after multiple connect/disconnect events. A clamping diode may be used to minimize *ESD*, and a bulk capacitor should be placed on +5V USB client rail to avoid excessive voltage spikes.

This will protect the level-shifting circuitry on the *USB0_VBUS_DET* signal used to alert the *SMARC* module's internal USB client controller when a host device is present.

Figure 14: USB Client Consideration

SMARC T335x Carrier Board Hardware Design Guide, Document Revision 1.3

2.3.2.4 Routing Considerations for USB

See *SMARC T335X* layout guide for trace routing guidelines and the *SMARC* specification for more information about this subject.

2.3.3. USB Reference Schematic

2.3.3.1. USB Host Reference Schematic

The power distribution for the four USB host port in the example below is handled by an 'AIC1526' dual channel power distribution switch from Analog Integrations (<u>http://www.analog.com.tw</u>). Users can also use other devices such as the Texas Instruments *TPS2052B* or Micrel *MIC2026-1* on the Carrier board.

Some *SMARC* modules are capable of generating wake up events over the USB interface during S3 or S5 system state.

Note:

In the example shown below the USB host port is powered by the 5V main power rail. For this reason the wake up functionality cannot be supported. If wake up functionality is required the USB host ports must be powered by the 5V standby power rail.

It is strongly recommended to use a RC filter on the FLGA (pin 2) and FLGB (pin 3, if used) of the Analog *AIC1526* to match the specified current-limit delay of the inrush current. For details consult the datasheet of the Analog *AIC1526*.

USB Host Connector Pinout

SMARC T335x Carrier Board Hardware Design Guide, Document Revision 1.3

Signal	Pin	Ю	Description
VCC	1	P5V	+5V Power Supply
DATA-	2	I/O USB	Universal Serial Bus Data, negative differential signal.
DATA+	3	I/O USB	Universal Serial Bus Data, positive differential signal.
GND	4	Р	Ground
GNDSHLD	5	Р	Shield Ground
GNDSHLD	6	Р	Shield Ground

2.3.3.2. USB Client Reference Schematic

The *USB0_OTG_ID* signal is used to detect which type of USB connector is plugged into the OTG jack (Mini-AB jack). When a Mini-A connector is inserted, the ID pin is connected to signal ground, causing the OTG port to be configured as a host. If a Mini-B USB connector is inserted, the ID pin is left unbiased and the OTG port will be configured as a slave device. Usually, there is a 10k pull-up to 3.3V on module for the *USB0_OTG_ID* signal, but TI Sitara AM335x does not require pull-ups on module.

The USBO_VBUS input signal is only used if the OTG port is in client mode (Mini-B USB connector plugged in or by software configured as slave only). The signal is used to detect whether a host is connected on the other end of the USB cable. This signal is 5V tolerant and can be connected directly to the power supply pin of the USB jack. *ESD* protection diodes should be used for this signal.

The USB0_EN_OC# signal is only used when the OTG port is operating in host mode (Mini-A USB connector is plugged in or the port is configured by software as host only). SMARC combines USB0_EN and USB0_OC# signals as a single USB0_EN_OC# signal. The USB0_EN signal is used to enable the USB bus power supply if it needs to be switchable. A USB compliant design needs to detect over current on the USB bus power supply and switch the power off should an over-current condition occur. The USB0_OC# signal is used to signal to the host controller that an over-current condition has occurred. Usually, this signal is active low has a 10k pull-up resistor to 3.3V on module, but TI Sitara AM335x does not

require pull-ups.

Figure 16: USB Client Reference Schematic

2.3.4. Unused USB Signals Termination

All unused USB signals can be left unconnected.

2.4 Parallel RGB LCD Interface

2.4.1. Parallel RGB LCD Signal

The following table shows the 24-bit parallel RGB signal.

SMARC	C Edge Finger	I/O	Туре	Power	Description
Pin#	Pin Name			Kall	
S111	LCD_D16	0	CMOS	3.3V	
S112	LCD_D17	0	CMOS	3.3V	
S113	LCD_D18	0	CMOS	3.3V	Red LCD data signals (LSB: D16,
S114	LCD_D19	0	CMOS	3.3V	MSB: D23)
S115	LCD_D20	0	CMOS	3.3V	
S116	LCD_D21	0	CMOS	3.3V	
S117	LCD_D22	0	CMOS	3.3V	
S118	LCD_D23	0	CMOS	3.3V	
S102	LCD_D8	0	CMOS	3.3V	
S103	LCD_D9	0	CMOS	3.3V	
S104	LCD_D10	0	CMOS	3.3V	
S105	LCD_D11	0	CMOS	3.3V	Green LCD data signals (LSB: D8, MSB: D15)
S106	LCD_D12	0	CMOS	3.3V	
S107	LCD_D13	0	CMOS	3.3V	
S108	LCD_D14	0	CMOS	3.3V	
S109	LCD_D15	0	CMOS	3.3V	

SMARC	C Edge Finger	I/O	Туре	Power	Description
Pin#	Pin Name			Rall	
S93	LCD_D0	0	CMOS	3.3V	
S94	LCD_D1	0	CMOS	3.3V	
S95	LCD_D2	0	CMOS	3.3V	
S96	LCD_D3	0	CMOS	3.3V	Blue LCD data signals (LSB: D0, MSB: D7)
S97	LCD_D4	0	CMOS	3.3V	
S98	LCD_D5	0	CMOS	3.3V	
S99	LCD_D6	0	CMOS	3.3V	
S100	LCD_D7	0	CMOS	3.3V	
S120	LCD_DE	0	CMOS	3.3V	Data Enable
S121	LCD_VS	0	CMOS	3.3V	Vertical Sync.
S122	LCD_HS	0	CMOS	3.3V	Horizontal Sync.
S123	LCD_PCK	0	CMOS	3.3V	Pixel Clock
S127	LCD_BKLT_EN	0	CMOS	3.3V	Backlight Enable Signal
S133	LCD_VDD_EN	0	CMOS	3.3V	LCD Data Power Enable Signal
S139	I2C_LCD_CK	0	OD	3.3V	LCD Display I2C Clock
S140	I2C_LCD_DAT	I/O	OD	3.3V	LCD Display I2C Data
S141	LCD_BKLT_PWM	0	CMOS	3.3V	Backlight PWM, can be used to control the brightness of the LCD backlight
S142	LCD_DUAL_PCK				Not used

2.4.2. Parallel RGB LCD Implementation Guide

2.4.2.1. LCD Data Line

The parallel RGB interface can cause problems with EMC compliance when used with a high pixel clock frequency. This can be made worse if a display is connected over flat flex cables. Therefore, the flat flex cables should be kept as short as possible. Series resistors in the data lines reduce the slew rate of the signals which reduces the radiation problem but can introduce signal quality and timing problems. The serial resistor value is a trade-off between reduction of electromagnetic radiation and signal quality. A good starting value is 330hm.

Figure 17: LCD Data Line with Serial Resistors SMARC T335x Carrier Board Hardware Design Guide, Document Revision 1.3

2.4.2.2. LCD Color Mapping

The 24bit color mapping is guaranteed to be compatible with other *SMARC* modules. *LCD_D23*, *LCD_D15* and *LCD_D7* are the most significant bits (MSBs) and *LCD_D16*, *LCD_D8* and *LCD_D0* are the least significant bits (LSBs) for the respective colors. To use displays which require fewer bits (e.g. 18 or 16 bit displays), simply do not connect the bottom n LSBs for each color, where n is the number of signals that are not required for a specific color. For instance, to connect an 18 bit display, *LCD_D16*, *LCD_D17*, *LCD_D8*, *LCD_D9*, *LCD_D0* and *LCD_D1* will remain unused, and *LCD_D18*, *LCD_D10* and *LCD_D2* become the LSBs for this configuration.

In order to ensure compatibility between different *SMARC* modules, it is recommended that 18 or 16 bit displays are attached to the 24bit mapped interface according to the following table:

SMARC	CEdge Finger	24-bit	18-bit	16-bit
Pin#	Pin Name	RGB	RGB	RGB
S111	LCD_D16	R0		
S112	LCD_D17	R1		
S113	LCD_D18	R2	R0	
S114	LCD_D19	R3	R1	R0
S115	LCD_D20	R4	R2	R1
S116	LCD_D21	R5	R3	R2
S117	LCD_D22	R6	R4	R3
S118	LCD_D23	R7	R5	R4
S102	LCD_D8	G0		
S103	LCD_D9	G1		
S104	LCD_D10	G2	G0	
S105	LCD_D11	G3	G1	G0
S106	LCD_D12	G4	G2	G1
S107	LCD_D13	G5	G3	G2
S108	LCD_D14	G6	G4	G3
S109	LCD_D15	G7	G5	G4
S93	LCD_D0	B0		
S94	LCD_D1	B1		
S95	LCD_D2	B2	B0	
S96	LCD_D3	B3	B1	B0
S97	LCD_D4	B4	B2	B1
S98	LCD_D5	B5	ВЗ	B2
S99	LCD_D6	B6	B4	B3
S100	LCD_D7	B7	B5	 B4

2.4.2.3. I2C_LCD

Some displays feature an I2C interface for reading out the *EDID PROM* or additional controls such as contrast and hue. If the carrier board provides no other display interface with *DDC*, it is recommended that the *I2C_LCD* on the *SMARC* module be used for the DDC. The I2C interfaces on the *SMARC* module are 3.3V logic level. If the display requires a 5V interface, add an I2C logic level shifter.

2.4.2.4 Routing Considerations for Parallel LCD

See *SMARC T335X* layout guide for trace routing guidelines and the *SMARC* specification for more information about this subject.

2.4.3. Parallel RGB Reference Schematic

2.4.3.1. 18bit Parallel RGB Display Reference Schematic

As described in previous section, for 18-bit LCD configuration, *LCD_D16*, *LCD_D17*, *LCD_D8*, *LCD_D9*, *LCD_D0* and *LCD_D1* will remain unused and *LCD_D18*, *LCD_D10* and *LCD_D2* become the LSBs for this configuration. Following figure shows the 18-bit display reference schematics.

Figure 18: 18bit Parallel RGB Display Reference Schematic

2.4.3.2. LCD WLED Backlight Reference Schematic

WLED driver IC utilizes the inductor/Schottky diode pumping method, incorporating a feedback system to monitor output current. Driver output frequency can be from 0.5 - 3 MHz and efficiencies are up to 92%, depending on usage. The driver IC handles the DC to DC conversion, and these ICs typically include an input for a PWM dimming signal. Dimming is achieved by varying the duty cycle of the PWM. The example here uses TI TPS 61165 and is ideal for media form factor display.

The *LCD_BLKT_PWM* signal could be used for brightness control.

Figure 19: LCD WLED Backlight Reference Schematic

2.4.4. Unused Parallel RGB Interface Signals Termination

If unused pin is not driven to a valid logic level, then an external connection to GND is recommended.

2.4.5. Carrier Based 18 bit Color Depth LVDS

LVDS LCD operation is not native to the TI Sitara AM335x. In most cases, 18bit and 24 bit color mappings are not compatible. For 24 bit color mapping, the more common one, sometimes referred to as "24 bit standard color mapping" is not compatible with 18 bit panels, as it places the most significant RGB color data on the 4th LVDS data pair - the pair that is not used on 18 bit panels.

To offer users more flexibility to use 18-bit or 24-bit LVDS panels, the LVDS output is created on the carrier from the Sitara 24 bit LCD parallel data path. For single channel LVDS, a display resolution up to 1280 x 1024 pixels may be supported. Because TI AM335x SOC can support LCD resolutions up to 1366x768@60fps, 24bpp, this module does not support high resolution dual channel LVDS displays (higher than 1366x768@60fps, 24bpp).

This section mainly focuses on carrier based 18 bit color depth LVDS from the Module parallel data path. For 24 bit color depth LVDS, it will be detailed in the next section.

For flat panel use, parallel LCD data and control information (Red, Green and Blue color data, Display Enable, Vertical Synch and Horizontal Synch) are serialized onto a set of LVDS differential pairs. The information is packed into frames that are 7 bits long. For 18 bit color depths, the data and control information utilize three LVDS channels (18 data bits + 3 control bits = 21 bits; hence 3 channels with 7 bit frames) plus a clock pair.

Figure 20: Carrier Based 18-bit LVDS Connection

The following table details exactly how the *SMARC T335X* parallel LCD pins are mapped to the on-carrier Texas Instruments *SN75LVDS83B* LVDS transmitter. For 18 bit displays, LVDS channels 0, 1, 2 are used.

SMAR Edge Go	C Module olden Finger	LVDS Transmitter (TI SN75LVDS83B)		Net Names	hannel	it Bit	18-bit standard
Pin#	Pin Name	Pin#	Pin Name		TVDS C	Transm Order	color map
S104	LCD_D10	K5	D7	LCD_D10		1	GØ
S118	LCD_D23	J4	D6	LCD_D23		2	R5
S117	LCD_D22	КЗ	D4	LCD_D22	0	3	R4
S116	LCD_D21	J3	D3	LCD_D21		4	R3
S115	LCD_D20	K2	D2	LCD_D20		5	R2
S114	LCD_D19	K1	D1	LCD_D19		6	R1
S113	LCD_D18	J2	DØ	LCD_D18		7	RØ
S96	LCD_D3	D5	D18	LCD_D3		1	B1
S95	LCD_D2	E5	D15	LCD_D2		2	BØ
S109	LCD_D15	F6	D14	LCD_D15		3	G5
S108	LCD_D14	G6	D13	LCD_D14	1	4	G4
S107	LCD_D13	G5	D12	LCD_D13		5	G3
S106	LCD_D12	J6	D9	LCD_D12		6	G2
S105	LCD_D11	K6	D8	LCD_D11		7	G1
S120	LCD_DE	A3	D26	LCD_DE		1	DE
S121	LCD_VS	B4	D25	LCD_VSYNC		2	VS
S122	LCD_HS	A4	D24	LCD_HSYNC		3	HS
S100	LCD_D7	A6	D22	LCD_D7	2	4	B5
S99	LCD_D6	B5	D21	LCD_D6		5	B4
S98	LCD_D5	<i>B</i> 6	D20	LCD_D5		6	В3
S97	LCD_D4	C6	D19	LCD_D4		7	В2

SMARC Module Edge Golden Finger		LVDS Transmitter (TI SN75LVDS83B)		Net Names	hannel	it Bit	18-bit standard
Pin#	Pin Name	Pin#	Pin Name		D SQVJ	Transm Order	
Not Used	Not Used	A5	D23	Not Used		1	Not Used
S94	LCD_D1	D6	D17	LCD_D1		2	Not Used
S93	LCD_D0	E6	D16	LCD_D0	3	3	Not Used
S103	LCD_D9	H6	D11	LCD_D9		4	Not Used
S102	LCD_D8	H4	D10	LCD_D8		5	Not Used
S112	LCD_D17	K4	D5	LCD_D17		6	Not Used
S111	LCD_D16	J1	D27	LCD_D16		7	Not Used
S123	LCD_PCK	A2	CLKIN	LCD_PCLK			

Note:

If unused pin is not driven to a valid logic level, then an external connection to GND is recommended.

2.4.6. Carrier Based 24 bit Color Depth LVDS

For 24 bit color depths, four LVDS channels are used (24 data bits + 3 control bits + 1 unused bit = 28 bits, or 4 x 7) plus a clock pair. The LVDS clock is transmitted on a separate LVDS pair. The LVDS clock period is 7 times longer than the pixel clock period. The LVDS clock edges are off from the 7 bit frame boundaries by 2 pixel periods.

Figure 21: Carrier Based 24-bit LVDS Connection

The following table details exactly how the *SMARC T335X* parallel LCD pins are mapped to the on-carrier Texas Instruments *SN75LVDS83B* LVDS transmitter. For 24 bit displays, channels 0, 1, 2 and 3 are used.

SMARC Module Edge Golden Finger		LVDS Transmitter (TI SN75LVDS83B)		Net Names	annel	t Bit	24-bit standard
Pin#	Pin Name	Pin#	Pin Name		LVDS CH	Transmi Order	color map
S102	LCD_D8	K5	D7	LCD_D8		1	GØ
S116	LCD_D21	J4	D6	LCD_D21		2	R5
S115	LCD_D20	КЗ	D4	LCD_D20	0	3	R4
S114	LCD_D19	J3	D3	LCD_D19	U	4	R3
S113	LCD_D18	K2	D2	LCD_D18		5	R2
S112	LCD_D17	K1	D1	LCD_D17		6	R1
S111	LCD_D16	J2	DØ	LCD_D16		7	RØ
S94	LCD_D1	D5	D18	LCD_D1		1	B1
S93	LCD_D0	E5	D15	LCD_D0		2	ВО
S107	LCD_D13	F6	D14	LCD_D13		3	G5
S106	LCD_D12	G6	D13	LCD_D12	1	4	G4
S105	LCD_D11	G5	D12	LCD_D11		5	G3
S104	LCD_D10	J6	D9	LCD_D10		6	G2
S103	LCD_D9	K6	D8	LCD_D9		7	G1
S120	LCD_DE	A3	D26	LCD_DE		1	DE
S121	LCD_VS	B4	D25	LCD_VSYNC		2	VS
S122	LCD_HS	A4	D24	LCD_HSYNC		3	HS
S98	LCD_D5	A6	D22	LCD_D5	2	4	B5
S97	LCD_D4	B5	D21	LCD_D4		5	B4
S96	LCD_D3	<i>B</i> 6	D20	LCD_D3		6	В3
S95	LCD D2	C6	D19	LCD D2		7	B2

SMARC Module Edge Golden Finger		LVDS Transmitter (TI SN75LVDS83B)		Net Names	hannel	nit Bit	24-bit standard color map
Pin#	Pin Name	Pin#	Pin Name		TVDS C	Transn Order	
NC	NC	A5	D23	Not Used		1	Not Used
S100	LCD_D7	D6	D17	LCD_D7		2	B7
S99	LCD_D6	E6	D16	LCD_D6	2	3	B6
S109	LCD_D15	H6	D11	LCD_D15	3	4	G7
S108	LCD_D14	H4	D10	LCD_D14		5	G6
S118	LCD_D23	K4	D5	LCD_D23		6	R7
S117	LCD_D22	J1	D27	LCD_D22		7	R6
S123	LCD_PCK	A2	CLKIN	LCD_PCK			

Note:

If unused pin is not driven to a valid logic level, then an external connection to GND is recommended.

2.4.6.1. 24bit LVDS Display Reference Schematic

To improve the *EMI* behavior of the LVDS interface, a design should include common mode chokes, which have to be placed as close as possible to the LVDS connector signal pins. Common mode chokes can provide required noise attenuation but they also distort the signal quality of full-speed and high-speed signaling.

Figure 22: 24bit LVDS Display Reference Schematic

2.4.7. LVDS Connector and Cable Consideration

When implementing LVDS signal pairs on a single-ended carrier board connector, the signals of a pair should be arranged so that the positive and negative signals are side by side. The trace lengths of the LVDS signal pairs between the transmitter and the connector on the carrier board should be the same when possible. Additionally, one or more ground traces/pins must be placed between the LVDS pairs.

Balanced cables (twisted pair) are usually better than unbalanced cables (ribbon cable) for noise reduction and signal quality. Balanced cables tend to generate less *EMI* due to field canceling effects and also tend to pick up electromagnetic radiation as common-mode noise, which is rejected by the receiver.

Twisted pair cables provide a low-cost solution with good balance and flexibility. They are capable of medium to long runs depending upon the

application skew budget. A variety of shielding options are available.

Ribbon cables are a cost effective and easy solution. Even though they are not well suited for high-speed differential signaling they do work fine for very short runs. Most cables will work effectively for cable distances of <0.5m. The cables and connectors that are to be utilized should have a differential impedance of 100 Ω ±15%. They should not introduce major impedance discontinuities that cause signal reflections.

For more information about this subject refer to the 'LVDS Owners Manual Chapter 6' available from National Semiconductor (<u>http://www.national.com</u>).

2.4.8. Routing Consideration for LVDS

See *SMARC T335X* layout guide for trace routing guidelines and the *SMARC* specification for more information about this subject and the *'LVDS Owner's Manual Chapter 3*' from National Semiconductor (http://www.national.com) for more information about this subject.

2.5 SD/SDIO Interface

The *SMARC* module form factor features one 4-bit SD/SDIO interfaces as standard interface and can be a boot device.

SDIO (Secure Digital I/O) provides an easy to implement solution for high-speed data I/O combined with low power consumption. SDIO cards are fully compatible with SD memory cards. This includes mechanical, electrical, power, signaling and software compatibility.

SDIO hosts are able to drive SD cards and MMC (MultiMediaCards) as well as SDIO cards that provide functions such as Ethernet or WLAN, GPS receivers, Bluetooth, modems etc.

2.5.1. SD/SDIO Signal

The following table shows the SDIO signals.

SMARC Edge Finger		I/O	Type Power Descriptio		Description
Pin#	Pin Name			Ναιι	
P39	SDIO_D0	10	CMOS	3.3V	Data signals [3:0], used for SD,
P40	SDIO_D1	10	CMOS	3.3V	MMC and SDIO interfaces, add external49.9k ohm pull-up
P41	SDIO_D2	10	CMOS	3.3V	resistors on carrier
P42	SDIO_D3	10	CMOS	3.3V	
P33	SDIO_WP	10	CMOS	3.3V	Write Protect, add an external 49.9k ohm pull-up resistor on carrier if write protect is used
P34	SDIO_CMD	10	CMOS	3.3V	Command signal, add an external 49.9k ohm pull- up resistor on carrier
P35	SDIO_CD#	I	CMOS	3.3V	Card Detect, add an external 49.9k ohm pull-up resistor on carrier if card detect is used
P36	SDIO_CK	0	CMOS	3.3V	Clock Output
P37	SDIO_PWR_EN	10	CMOS	3.3V	SD card power enable
2.5.2. SD/SDIO Implementation Guidelines

2.5.2.1. ESD Protection

To protect the SD interface of the module from over-voltage caused by electrostatic discharge (*ESD*) and electrical fast transients (EFT), it is highly recommended to use low capacitance steering diodes and transient voltage suppression diodes that must be implemented on the carrier board (for example *PACDN006MR ESD* Suppressor from On Semiconductor or *SR05 RailClamp*®' surge rated diode arrays from Semtech, <u>http://semtech.com</u>).

2.5.2.2. SDIO_PWR_EN Signal

SDIO_PWR_EN is a GPIO to control the switch of SD card power. When this signal is pulled high, it will enable the SD card power. When this signal is pulled down, it will turn off the SD card power.

If the system requires having the SD card boot functionality, this signal has to be pull high at default state and the pull up resistor should be 4.7k or less.

Figure 23: SDIO_PWREN Signal Reference Schematic

2.5.2.3. Routing Considerations for SD/SDHC interface

See *SMARC T335X* layout guide for trace routing guidelines and the *SMARC* specification for more information about this subject.

2.5.3. SD/SDHC Reference Schematic

The example shown below is implemented on the *SMARC T335X* evaluation carrier board. The over-current protection of the SDIO host is implemented with the current limited, power distribution switch *EMP8736* from Elite (<u>http://www.esmt.com.tw</u>) or RT9702 from Richtek (<u>http://www.richtek.com</u>).

Figure 24: SD/SDHC Interface Reference Schematic

2.5.4. Unused SD/SDHC Signals Termination

All unused SD interface signals can be left unconnected.

2.6 I2S Audio Interface

The *SMARC* specification defines minimum configuration of one (1) I2S interface up to a maximum of three (3) ports and one of them (*I2S2*) may alternatively be used to implement a *HDA* (High Definition Audio) channel. *I2S* interfaces are typically used for connection to *I2S* audio *CODEC*. This interface is also useful for connection to peripherals such as baseband modems, touch controllers, etc. A common audio master clock signal is also defined. *SMART T335X* features one *I2S* interface (*I2S0*) that delivers stereo audio line output and processes stereo audio line input. *I2SO* interface of *SMARC T335X* is implemented from *McASP* interfaces of *Sitara AM335x*.

The *SMART-BEE* incorporates a Texas Instruments *TLV320AIC3106* stereo codec for input and output of audio signals. The codec samples analog signals on the microphone or line inputs and converts them into digital data so it can be processed by the AM335x processor. When the processor is finished with the data it uses the codec to convert the samples back into analog signals on the line output so the user can hear the output.

2.6.1. I2S Signals

The following table shows the *I2S0* signals.

SMARC	C Edge Finger	I/O	Туре	Power Rail	Description
_Pin#	Pin Name				
S38	AUDIO_MCK	0	CMOS	3.3V	Master clock output to Audio codecs, not used, uses an external 24.576Mhz oscillator
S39	I2SØ_LRCK	10	CMOS	3.3V	Left& Right audio synchronization clock
S40	I2SØ_SDOUT	0	CMOS	3.3V	Digital audio Output
S41	I2S0_SDIN	1	CMOS	3.3V	Digital audio Input
S42	1250_СК	0	CMOS	3.3V	Digital audio clock

I2S1 interface is not used in SMARC T335X.

SMARC	C Edge Finger	I/O	Туре	Power Rail	Description
Pin#	Pin Name				
S43	I2S1_LRCK				Not Used
S44	I2S1_SDOUT				Not Used
S45	I2S1_SDIN				Not Used
S46	I2S1_CK				Not Used

I2S2 interface is not used in SMARC T335X.

SMARC	CEdge Finger	I/O	Туре	Power Rail	Description
Pin#	Pin Name				
S50	I2S2_LRCK				Not Used
S51	I2S2_SDOUT				Not Used
S52	I2S2_SDIN				Not Used
S53	1252_CK				Not Used

2.6.2. I2S Implementation Example

The example in Figure 25 shows the implementation of the Texas Instrument *TLV320AIC3106* audio codec. This I2S audio codec is used on the *SMART-BEE* carrier board.

The codec communicates using two serial channels, one (*I2C_PM*) to control the codec's internal configuration registers and one (*I2S0*) to send and receive digital audio samples. The *I2C_PM* bus is used as the *AIC3106's* control channel. The slave address for *I2C_PM* is *0x1B*. The control channel is generally only used when configuring the codec; it is typically idle when audio data is being transmitted, *McASP* (*I2S0*) is used as the bi-directional data channel. All audio data flows through the data channel.

The codec is clocked via a 24.576 MHz oscillator. The internal sample rate generator subdivides the default system clock to generate common audio frequencies. The sample rate is set by a codec register.

Figure 25: AIC3106 I2S Audio CODEC Reference Schematic

2.6.3. I2S Placement and Routing Guide

The implementation of proper component placement and routing techniques will help to ensure that the maximum performance available from the codec is achieved. Routing techniques that should be observed include properly isolating the codec, associated audio circuitry, analog power supplies, and analog ground planes from the rest of the carrier board. This includes split planes and the proper routing of signals not associated with the audio section.

The following is a list of basic recommendations:

- Traces must be routed with a target impedance of 55Ω with an allowed tolerance of \pm 15%.
- Ground return paths for the analog signals must be given special consideration.
- Digital signals routed in the vicinity of the analog audio signals must not cross the power plane split lines. Locate the analog and digital signals as far as possible from each other.
- Partition the carrier board with all analog components grouped together in one area and all digital components in another.

• Keep digital signal traces, especially the clock, as far as possible from SMARC T335x Carrier Board Hardware Design Guide, Document Revision 1.3

the analog input and voltage reference pins.

- Provide separate analog and digital ground planes with the digital components over the digital ground plane, and the analog components, including the analog power regulators, over the analog ground plane. The split between planes must be a minimum of 0.05 inch wide.
- Route analog power and signal traces over the analog ground plane.
- Route digital power and signal traces over the digital ground plane.
- Position the bypassing and decoupling capacitors close to the IC pins, or position the capacitors for the shortest connections to pins, with wide traces to reduce impedance.
- Do not completely isolate the analog/audio ground plane from the rest of the carrier board ground plane. Provide a single point (0.25 inch to 0.5 inch wide) where the analog/isolated ground plane connects to the main ground plane. The split between planes must be a minimum of 0.05 inch wide.
- Any signals entering or leaving the analog area must cross the ground split in the area where the analog ground is attached to the main carrier board ground. That is, no signal should cross the split/gap between the ground planes, which would cause a ground loop, thereby greatly increasing *EMI* emissions and degrading the analog and digital signal quality

2.6.4. Unused I2S Signals Termination

All unused I2S interface signals can be left unconnected.

2.7 CAN BUS Interface

Controller Area Network (CAN or CAN-bus) is a message based protocol designed specifically for automotive applications but now is also used in other areas such as industrial automation and medical equipment.

The *SMARC* specification defines two optionally CAN bus controller interfaces and *T335X* features one. Following section shows the pinout of CAN controller of *T335X*.

2.7.1. CAN BUS Controller Signal

The following table shows the CANO controller interface signals.

SMARC	Edge Finger Pin Name	I/O	Туре	Power Rail	Description
P143	CAN0_TX	0	CMOS	3.3V	CAN0 Transmit Output
P144	CAN0_RX	I	CMOS	3.3V	CAN0 Receive Input

CAN1 interface is not used in SMARC T335X.

SMARC	Edge Finger	I/O	Туре	Power Rail	Description
	F LIT NUME				
P145	CAN1_TX				Not Used
P146	CAN1_RX				Not Used

2.7.2. CAN Interface Implementation Guidelines

2.7.2.1. CAN System Architecture

A typical architecture of the CAN system is shown in following figure. A CAN interface controller is connected to the transceiver via a serial data output line (TX) and a serial data input line (RX). The transceiver is attached to the bus line via its two bus terminals *CANH* and *CANL*, which provide differential receive and transmit capability.

Figure 26: CAN Interface System Block Diagram

SMARC T335x Carrier Board Hardware Design Guide, Document Revision 1.3

The input *Rs* is used for mode control purpose. Both transceiver products are powered with a nominal supply voltage of +5 V.

The *CAN* bus controller outputs a serial transmit data stream to the *TxD* input of the transceiver. An internal pull-up function sets the *TxD* input to logic HIGH i.e. the bus output driver is passive by default. In this so-called recessive state (see figure 27) the *CANH* and *CANL* inputs are biased to a voltage level of 2.5 V nominal via receiver input networks with an internal impedance of 17 kW typical. Otherwise if a logic Low-level is applied to *TxD*, this activates the bus output stage, thus generating a so-called dominant signal level on the bus line (see figure 27). The output driver consists of a source and a sink output stage. *CANH* is attached to the source output and CANL to the sink output stage. The nominal voltage in the dominant state is 3.5 V for the *CAN_H* line and 1.5 V for the *CAN_L* line.

Figure 27: Nominal Bus Levels According to ISO 11898

In Figure 26 the transceiver is directly connected to the protocol controller and its application circuitry. In some highly regulated cases like in-vehicle networking environment, galvanic isolation barriers are needed between the high- and low-voltage parts. An isolated CAN transceiver might be applied. Please see the application note of the used CAN transceiver for details.

2.7.2.2. EMI Protection

Common-mode chokes or LC filter are frequently used in automotive CAN networks to increase system reliability with respect to *EMC*. *EMI* emitted from an end device through the CAN transceiver can be filtered, thus limiting unwanted high-frequency noise on the communication bus. Another reason for using a common-mode choke or LC filter is attempting to improve the susceptibility (immunity) of the transceiver to electromagnetic disturbances on the bus.

While the above mentioned effects of the common-mode choke or LC filter are beneficial, unexpected results can occur under certain conditions. EMC susceptibility can be degraded in some frequency ranges, bus signal integrity worsened, and extremely high transient voltages under bus-failure conditions can be generated, which, in the worst case, can lead to damage in the CAN transceiver and other network components.

2.7.2.3. Terminations

A High Speed CAN bus must be terminated at both ends with a *120 ohm* resistor between *CAN_H* and *CAN_L*. Improperly terminated cable runs can work at speeds up to 125Kbps, but it is best to always terminate your bus properly at both ends. This will allow for maximum data integrity at high and low speeds.

2.7.2.4. Routing Considerations for CAN Interface

Follow differential routing guidelines. Length match between CAN_H and CAN_L should be +/- 100mil. See *SMARC T335X* layout guide for trace routing guidelines and the *SMARC* specification for more information about this subject.

2.7.3. CAN Interface Reference Schematic

The example shown below is implemented on the *SMARC T335X* evaluation carrier board. The CAN transceiver used is from *TI SN65HVD251D* that has built-in 14kV *ESD* protection and a wide common-mode voltage range.

Figure 28: CAN Interface Reference Schematic

2.7.4. Unused CAN Signals Termination

All unused CAN interface signals can be left unconnected.

2.8 Serial COM Port Interface

The *SMARC* specification defines up to four asynchronous serial ports interface in CMOS logic level. The ports are designated *SER0* ~ *SER3*. Ports *SER0* and *SER2* are 4 wire ports (2 data lines and 2 handshake lines). Ports *SER1* and *SER3* are 2 wire ports (data only).

SMARC T335X module offers three serial ports interface (*SER0*, *SER1* and *SER3*) that enable interfacing COM ports on the carrier board design. *SER1* is used for software debug port by default. The serial ports interface bus can support standard RS-232, RS422 and RS485 serial communication.

The signals for Serial COM ports on the *T335X* module connectors are 3.3V logic-level signals. External transceiver devices are necessary for the conversion of the logic-level signals to the desired physical interface such as RS232, RS422 or RS485 serial communication.

Following section shows the pinouts of asynchronous serial port interface of *T335X*.

2.8.1. Serial COM Port Signals

SMAR(C Edge Finger Pin Name	I/O	Туре	Power Rail	Description
P129	SERØ TX	0	CMOS	3 31/	Asynchronous serial port data out
7 120	52.00_17		01100	0.07	
P130	SER0_RX	1	CMOS	3.3V	Asynchronous serial port data in
P131	SER0_RTS#	0	CMOS	3.3V	Request to Send handshake line for SER0
P132	SER0_CTS#	I	CMOS	3.3V	Clear to Send handshake line for
					<u> </u>

The following table shows the *SER0* controller interface signals.

SER1 interface is defined as follows.

SMARC	CEdge Finger	<i>I/</i> O	Туре	Power Rail	Description
Pin#	Pin Name				
P134	SER1_TX	0	CMOS	3.3V	Asynchronous serial port data out
P135	SER1_RX	1	CMOS	3.3V	Asynchronous serial port data in

SER2 interface is not used in SMARC T335X.

SMARC	C Edge Finger	I/O	Туре	Power Rail	Description
Pin#	Pin Name				
P136	SER2_TX				Not Used
P137	SER2_RX				Not Used
P138	SER2_RTS#				Not Used
P139	SER2_CTS#				Not Used

SER3 (Debug Port) interface is defined as follows.

SMAR	C Edge Finger	I/O	Туре	Power Rail	Description
Pin#	Pin Name				
P140	SER3_TX	0	CMOS	3.3V	Asynchronous serial port data out
P141		I	CMOS	3.3V	Asynchronous serial port data in

2.8.2. Asynchronous Interface Implementation Guidelines

2.8.2.1. RS232/422/485 System Diagram

The diagram below shows the system diagram of RS232, 422 and 485. An external transceiver is used to convert the logic-level signals to desired physical interface.

Figure 29: RS232, RS422 and RS485 System Block Diagram

SMARC T335x Carrier Board Hardware Design Guide, Document Revision 1.3

2.8.2.2. EMI Protection

An LC filter is frequently used in serial networks to increase system reliability with respect to EMC. *EMI* emitted from an end serial device through the RS232/RS422/RS485 transceivers can be filtered, thus limiting unwanted high-frequency noise on the communication bus.

2.8.2.3. Terminations

A RS422/RS485 bus must be terminated at both ends with a *120 ohm* resistor between the differential signal pair. It is best to always terminate your bus properly at both ends. This will allow for maximum data integrity at high and low speeds.

2.8.2.4. Routing Considerations for Serial Interface

See *SMARC T335X* layout guide for trace routing guidelines and the *SMARC* specification for more information about this subject.

2.8.3. Asynchronous Serial Interface Reference Schematic

The example shown below is implemented on the *SMARC T335X* evaluation carrier board. The RS232, RS322 and RS485 transceivers that used are from *TI MAX3243* and *SN75HVD11D* that has built-in 16kV *ESD* protection. A jumper block is also used to select the RS232, RS422 or RS 485 mode.

Figure 30: RS232, RS422 and RS485 Reference Schematic

2.8.4. Unused Asynchronous Serial Signals Termination

All unused asynchronous serial interface signals can be left unconnected.

2.9 SPI Interface

The Serial Peripheral Interface (SPI) is a 4-pin interface that provides a potentially lower-cost alternative for system devices such as EEPROM and flash components.

SMARC standard features two optional SPI ports. Each port defines two chip select signals that can connect up to two SPI devices.

SMARC T335X features two SPI interfaces. The *SPI0_CS0#* is taken to connect a 4MB serial flash on module. If users would like to use SPI0 port, use *SPI0_CS1* as chip select signal instead. The *SPI0_CS0#* signal in evaluation carrier of *SMARC T335X* can be used when developers use *SMARC* modules from other vendors.

2.9.1. SPI Signals

SMAR	C Edge Finger	I/O	Туре	Power Rail	Description
Pin#	Pin Name			Nan	
P31	SPI0_CS1#	0	CMOS	3.3V	SPI0 Master Chip Select 1 output
P43	SPI0_CS0#	0	CMOS	3.3V	SPI0 Master Chip Select 0 output, reserve for onboard NOR flash
P44	SPI0_CK	0	CMOS	3.3V	SPI0 Master Clock output
P45	SPI0_DIN	1	CMOS	3.3V	SPI0 Master Data input (input to CPU, output from SPI device)
P46	SDIO_DO	0	CMOS	3.3V	SPI0 Master Data output (output from CPU, input to SPI device)

The following table shows the SPI0 interface signals.

SPI1 interface signal is defined as follows.

SMAR	C Edge Finger	I/O	Туре	Power Rail	Description
Pin#	Pin Name				
P54	SPI1_CS0#	10	CMOS	3.3V	SPI1 Master Chip Select 0 output
P55	SPI1_CS1#	10	CMOS	3.3V	SPI1 Master Chip Select 1 output
P56	SPI1_CK	10	CMOS	3.3V	SPI1 Master Clock output
P57	SPI1_DIN	1	CMOS	3.3V	SPI1 Master Data input (input to CPU, output from SPI device)
P58	SPI1_DO	10	CMOS	3.3V	SPI1 Master Data output (output from CPU, input to SPI device)

2.9.2. SPI Interface Implementation Guidelines

SPI Devices communicate using a master/slave relationship, in which the master initiates the data frame. When the master generates a clock and selects a slave device, data may be transferred in either or both directions simultaneously. In fact, as far as SPI is concerned, data are always transferred in both directions.

SPI specifies four signals: clock (SCLK); master data output, slave data input (MOSI); master data input, slave data output (MISO); and slave select (ÇS). Figure 31 shows these signals in a single-slave configuration. SCLK is generated by the master and input to all slaves. MOSI carries data from master to slave. MISO carries data from slave back to master. A slave device is selected when the master asserts its ÇS signal.

Figure 31: SPI with Single-Slave Configuration

SMARC T335x Carrier Board Hardware Design Guide, Document Revision 1.3

If multiple slave devices exist, the master generates a separate slave select signal for each slave. These relationships are illustrated in Figure 32.

The master generates slave select signals using general-purpose discrete input/output pins or other logic. This consists of old-fashioned bit banging and can be pretty sensitive. You have to time it relative to the other signals and ensure, for example, that you don't toggle a select line in the middle of a frame.

Figure 32: SPI with Multi-Slave Configuration

2.9.2.1. Routing Considerations for SPI interface

The SPI signal length on the *SMARC* carrier board should be no longer than 4.5 inches. It is recommended that you shorten your trace length as much as possible to attain the best signal quality.

To reduce the length of the SPI trace, place the SPI device close to the MXM 3.0 board-to-board interconnectors. Avoid stubs and minimize the number of vias through the entire trace.

The following table shows the SPI signal layout and trace routing guidelines.

Signal Name	Impedance	Trace Length	Length Matching	Comments				
SPI_MOSI								
SPI_MISO	550hm	Max. 4.5	Within one	If there are two devices (SPI				
SPI_CLK		Incries	segment	the routing is in daisy chain				
SPI_CS#				topology.				
SPT POWER	SPT_POWER Power for SPI devices. The trace width shall be minimally 20mil							
SPI_MISO SPI_CLK SPI_CS# SPI_POWER	550hm Power for SF	Max. 4.5 inches Pl devices. The t	Within one inch per segment race width sha	If there are two devices (SF ROM and Header) on carrie the routing is in daisy chai topology. Il be minimally 20mil.				

2.9.3. SPI Implementation Reference Schematic

The example shown below is implemented on the *SMARC T335X* evaluation carrier board. SPI signals are presented in a 2.0mm header. A varistor is applied on each signal line and able to withstand *ESD* test of IEC-61000-4-2 and surge protection.

Figure 33: SPI Signals Reference Schematic

2.9.4. Unused SPI Signals Termination

All unused SPI signals can be left unconnected.

2.10 I2C BUS Interface

Due to the simple two-wire serial bus protocol and the high availability of devices, the I2C Bus is a frequently used low speed bus interface for connecting embedded devices such as sensors, converters or data storage.

The *SMARC* specification defines up to five I2C interfaces dedicated for power management (*I2C_PM*), camera (*I2C_CAM*), general purposes (*I2C_GP*), LCD display (*I2C_LCD*) and HDMI (*HDMI_CTRL*) support. Due to *T335X* does not have HDMI and camera interfaces, the *T335X* module features only three I2C interfaces (*I2C_PM*, *I2C_GP* and *I2C_LCD*). All I2C interfaces can also be used for general purpose and all support 100kHz and 400kHz data rate.

The I2C Bus of the *SMARC* module can be accessed and programmed by using the API (Application Program Interface) called Embedded Application Software Interface (*EASI*). For more details about *EASI*, refer to the *EASI* Programmers Guide

Following section shows the pinout of I2C interfaces of *T*335*X*.

2.10.1. I2C BUS Controller Signal

SMARC Edge Finger I/O Type Power Description

The following table shows the *I2C_PM* controller interface signals.

SMARC Eage Finger		і/О Туре		Power Rail	Description	
Pin#	Pin Name					
P121	I2C_PM_CK	IO OD	CMOS	1.8V	Power Management I2C Bus Clock	
P122	I2C_PM_DAT	IO OD	CMOS	1.8V	Power Management I2C Bus Dada	

Both *I*2*C_PM_CK* and *I*2*C_PM_DAT* have a 2.2k pull-up resistor to 1.8V. The 1.8V CMOS level of *I*2*C_PM* bus is defined by *SMARC* specification.

I2C_GP interface signal is defined as follows.

SMARC	CEdge Finger	I/O	Туре	Power Rail	Description
Pin#	Pin Name			ixan	
S48	I2C_GP_CK	IO OD	CMOS	3.3V	General purpose use
S49	I2C_GP_DAT	IO OD	CMOS	3.3V	General purpose use

Both I2C_GP_CK and I2C_GP_DAT have a 2.2k pull-up resistor to 3.3V.

I2C_LCD interface signal is defined as follows.

SMARC Edge Finger		I/O Type		Power Rail	Description	
Pin#	Pin Name					
S48	I2C_GP_CK	IO OD	CMOS	3.3V	LCD display support (for parallel and LVDS LCD)	
S49	I2C_GP_DAT	IO OD	CMOS	3.3V	LCD display support (for parallel and LVDS LCD)	

Both *I2C_GP_CK* and *I2C_GP_DAT* have a 2.2k pull-up resistor to 3.3V.

All I2C interfaces can be served as general purpose I2C bus.

I2C_CAM interface is not used in SMARC T335X.

SMARC	Edge Finger	I/O	Туре	Power Rail		Description
Pin#	Pin Name					
S5	I2C_CAM_CK				Not Used	
S6	I2C_CAM_DAT				Not Used	

I2C for HDMI interface is not used in SMARC T335X either.

SMARC	Edge Finger	I/O	Туре	Power Rail	Description
Pin#	Pin Name				
P104	HDMI_CTRL_CK				Not Used
P105	HDMI_CTRL_DAT				Not Used
SNAADC	T22Ev Carrier Bear	Julardura	ro Dooign	Cuido Do	aument Paviaian 1.2

SMARC T335x Carrier Board Hardware Design Guide, Document Revision 1.3

2.10.2. I2C Interface Implementation Guidelines

2.10.2.1. Terminations

I2C_PM bus has a 2.2k pull-up to 1.8V on module. *I2C_GP* and *I2C_LCD* buses have a 2.2k pull-up to 3.3V on module. There is no need to pull up on carrier.

2.10.2.2. Routing Considerations for I2C Interface

The I2C does not need to be routed as differential pair, but it is recommended not to separate the data and clock lines too much. It is not required to route the bus as daisy chain as the stub length is not a problem. The maximum trace length is limited due to the capacitive load of the traces.

Therefore, traces should be kept short as possible by using a star topology. See *SMARC T335X* layout guide for trace routing guidelines and the *SMARC* specification for more information about this subject.

2.10.3. I2C Implementation Reference Schematic

In *SMART-BEE* evaluation carrier, *I2C_PM* bus is also connected to a *TI TLV320AIC3106* audio codec and an On Semiconductor *AT24* 4KB EEPROM that can access the carrier board information. The schematic for audio part can be found at I2S section of this document. The example shown below is implemented of I2C EEPROM on the *SMARC T335X* evaluation carrier board. *I2C_PM* is level shifted to 3.3V on carrier from 1.8V on module.

Figure 34: I2C EEPROM Reference Schematic

2.10.4. Unused I2C Signals Termination

All unused I2C signals can be left unconnected.

2.11 Selecting the Boot Mode

SMARC hardware specification defines three pins (*BOOT_SEL[0:2]*) that allow the Carrier board user to select from eight possible boot devices.

SMARC	Edge Finger	I/O	Туре	Power Rail	Description
PIN#	ріп мате				
S48	BOOT_SEL[0:2]#	I	CMOS	3.3V	Input straps determine the Module boot device. Pulled up on Module.

Three of them are Module devices, and four of them are Carrier devices, and one is a remote device. The Carrier shall either leave the Module pin Not Connected ("Float" in the table below) or shall pull the pin to GND, per the table below.

	Carrier Conr	nection	Boot Source	
	BOOT_SEL2#	BOOT_SEL1#	BOOT_SEL0#	
0	GND	GND	GND	Carrier SATA
1	GND	GND	Float	Carrier SD Card
2	GND	Float	GND	Carrier eMMC Flash
3	GND	Float	Float	Carrier SPI
4	Float	GND	GND	Module device (NAND, NOR) - vendor specific
5	Float	GND	Float	Remote boot (GBE, serial) - vendor specific
6	Float	Float	GND	Module eMMC Flash
7	Float	Float	Float	Module SPI

The text in grey represents the boot mode defined in *SMARC* specification, but not supported by *SMARC* T335X.

The boot mode selection of *SMARC T335X* is listed in the following table.

	Carrier Coni	nection	Boot Source	
	BOOT_SEL2#	BOOT_SEL1#	BOOT_SEL0#	
0	GND	GND	Float	Carrier SD Card
1	Float	Float	GND	Module eMMC Flash
2	GND	Float	Float	Carrier SPI

Note: The BOOT_SELx# configuration will be decoded to SYSBOOT on module and recognized by AM335X. The ROM code of AM335X will know where to load the 2nd stage bootloader (SPL) based on the SYSBOOT configuration during the 1st stage initiation.

If the boot mode is selected to carrier SD card and SD card is not presented, AM335x will look for SPI0 as next boot device. Please see *"AM335x ARM Cortex-A8 Microprocessors (MPUs), rev F"* from Texas Instrument for more details.

2.11.1. Boot Mode Selection Reference Schematic

Figure below is the reference schematic of boot mode selection.

Figure 35: Boot Mode Selection Reference Schematic

SMARC T335x Carrier Board Hardware Design Guide, Document Revision 1.3

2.12 Watchdog Control Signals

The simplest way to implement the watchdog timer is to utilize the *AM335X* internal *WDT* function. This function is available to users through the standard Linux Watchdog API. The Watchdog can be initialized and controlled by the API (Application Program Interface) called Embedded Application Software Interface (*EASI*). For more details about *EASI*, refer to the *EASI* Programmers Guide or following the link below:

http://www.kernel.org/doc/Documentation/watchdog/watchdog-api.txt.

The internal WDT is a 32 bit counter that resets the processor only when it rolls over to zero. The processor can reset the counter or turn it off, but, correctly used, it will reset the processor in case of a code crash. To avoid getting reset, the program must reset the timer every so often.

In addition to the software trigger available via *EASI*, the Watchdog on a *SMARC* module can be hardware-triggered by an external control circuitry. A watchdog timer output signal, *WDT_TIME_OUT#*, is defined on SMARC specification.

If the Watchdog timer has expired without a software or hardware trigger occurrence, the SMARC module will signal this with a low level output on the '*WDT_TIME_OUT#*' (Watchdog event indicator) signal and trigger the reset event.

SMARC	Edge Finger	I/O	Туре	Power Rail	Description
S145	WDT_TIME_OUT#	0	CMOS	3.3V	Watchdog Timer Output

2.12.1. External WDT Control Circuitry Reference Schematic

Figure below is the reference schematic of external WDT control circuit. Instead of reset the processor only, the external WDT circuitry will trigger the hardware reset.

Figure 36: External WDT Control Circuitry Reference Schematic

Chapter 3

Power Design Guideline

This Chapter details the general power requirements and control signals. Section include :

- Power Signals
- RTC Battery
- Power Flow and Control Signals Block Diagram
- Power States
- Power Sequences
- Layout Requirements
- Reference Schematics

Chapter 3 Power Design Guideline

SMARC modules are designed to be driven with a single +3V to +5.25V input power rail. A +5V is recommended for non-battery operated system. Unlike Q7 module, there is no separate voltage rail for standby power, other than the very low current RTC voltage rail. All module operating and standby power comes from the single set of *VDD_IN* pins. This suits battery power sources well, and is also easy to use with non-battery sources.

3.1 Power Signals

SMARC Edge Finger		I/O	Туре	Power Rail	Description
Pin#	Pin Name				
P147, P148, P149, P150, P151,P152, P153, P154, P155, P156	VDD_IN	1	PWR	3.35V~5.25V ¹	Main power supply input for the module
P2, S3, P9, S10, P12, S13, P15, S16, P18, S25, P32, S34, P38, S47, P47, P50, P53, P59, S61, S64, S67, P68, S70, S73, P79, S80, P82, S83, P85, S86,P88, S89, P91, S92, P94, P97, P100, S101, P103, S110, S119, P120, S124, S130, P133, S136, P142, S143	GND	1	PWR		Common signal and power ground
S147	VDD_RTC	I	PWR	3.3V	RTC supply, can be left unconnected if internal RTC is not used

3.1.1. Power Supply Signals

Note: 5V is recommended for non-battery operated system.

3.1.2. Power Control Signals

The input pins listed in the following table are all active low and are meant to be driven by OD (open drain) devices on the Carrier. The Carrier either floats the line or drives it to GND. No Carrier pull-ups are needed. The pull-up functions are performed on the Module. The voltage rail that these lines are pulled to on the Module varies, depending on the design, and may be 3.3V or *VDD_IN*.

SMAR	C Edge Finger	I/O	Туре	Power	Description	
Pin#	Pin Name			Rall		
S150	VIN_PWR_BAD#	1	CMOS	VDD_IN	Power bad indication from Carrier board	
S154	CARRIER_PWR_ON	0	CMOS	VDD_IO	Signal to inform Carrier board circuits being powered up	
P126	RESET_OUT#	0	CMOS	3.3V	General purpose reset output to Carrier board.	
P127	RESET_IN#	Ι	CMOS	3.3V	Reset input from Carrier board. Carrier drives low to force a Module reset, floats the line otherwise. Pulled up on Module. Driven by OD part on Carrier.	
S158	VDD_IO_SEL#	10	Strap	VDD_IN	A low logic level on this signal indicates that the Module VDD_IO level is configured for the default level of 1.8V; a high value indicates that the Module is configured for 3.3V VDD_IO. Pullup to VDD_IN rail through a resistance of 100K on module	
P128	POWER_BTN#	1	CMOS	3.3V	Power-button input from Carrier board. Carrier to float the line in in-active state. Active low, level sensitive. It is de-bounced on the Module Pulled up on Module. Driven by OD part on Carrier.	

3.1.3. Power Management Signals

The pins listed in the following table are related to power management and are shared with the 2^{nd} *LAN* signals. They will be used in a battery-operated system. The default configuration of *T335X* is *LAN*. If users would like to use these pins, contact Embedian representatives for more details.

SMARC	Edge Finger	I/O	Туре	Type Power Rail	Description
Pin#	Pin Name			nan	
S156	BATLOW# / RMII2_RXD1	I	CMOS	3.3V	Battery low indication to Module. Carrier to float the line in in-active state.
					Pulled up on Module.
					Driven by OD part on Carrier.
S154	CARRIER_PWR_ON / RMII2 RXD0	0	CMOS	VDD_IO	Signal to inform Carrier board circuits being powered up
S153	_ CARRIER_STBY# / RMII2_RXCLK	0	CMOS	3.3V	Module will drive this signal low when the system is in a standby power state
S152	CHARGER_PRSNT# / RMII2_RXER	I	CMOS	3.3V	Held low by Carrier if DC input for battery charger is present. Pulled up on Module.
S151	CHARGING# / RMII2_TXEN	I	Strap	3.3V	Held low by Carrier during battery charging. Carrier to float the line when charge is complete. Pulled up on Module. Driven by OD part on Carrier.

SMARC Edge Finger		I/O	Туре	Power	Description
Pin#	Pin Name			Rall	
S149	SLEEP# / RMII2_TXD0	I	CMOS	3.3V	Sleep indicator from Carrier board. May be sourced from user Sleep button or Carrier logic. Carrier to float the line in in-active state. Active low, level sensitive. Should be de-bounced on the Module. Pulled up on Module. Driven by OD part on Carrier.
S148	LID# / RMII2_TXD1	I	CMOS	3.3V	Lid open/close indication to Module. Low indicates lid closure (which system may use to initiate a sleep state). Carrier to float the line in in-active state. Active low, level sensitive. Should be de-bounced on the Module Pulled up on Module. Driven by OD part on Carrier.
P128	POWER_BTN# / RMII2_CRS_DV	1	CMOS	3.3V	Power-button input from Carrier board. Carrier to float the line in in-active state. Active low, level sensitive. It is de-bounced on the Module Pulled up on Module. Driven by OD part on Carrier.

3.2 RTC Battery

The Real Time Clock (RTC) is responsible for maintaining the time and date even when the *SMARC* module is not connected to a main power supply. RTC backup power is brought in on the *VDD_RTC* rail. The RTC consumption is typically 15 mA or less. Usually a +3V lithium battery cell is used to supply the internal RTC of the module. The allowable *VDD_RTC* voltage range is 2.4V to 3.3V. The *VDD_RTC* rail may be sourced from a Carrier based Lithium cell or Super Cap, or it may be left open if the RTC backup functions are not required. The module is able to boot without a *VDD_RTC* voltage source.

The *SMARC* specification defines an extra power pin '*VDD_RTC*', which connects the RTC of the module to the external battery. The signal '*VDD_RTC*' can be found on the module's connector pin S147.

3.2.1. RTC Battery Reference Circuitry

To implement the RTC Battery according to the Underwriters Laboratories Inc (UL) guidelines, battery cells must be protected against a reverse current going to the cell. This can be done by either a series Schottky diode or a series resistor. The safest way, and the one recommended by the *SMARC* Consortium, is to implement a RTC battery circuitry using a Schottky diode as shown in Figure 37. The diode is placed in series with the positive battery terminal. The diode anode is on the battery side, and the cathode on the Module VDD_RTC side.

This method offers protection against a possible explosion hazard as a result of reverse current flowing to the battery. Moreover, this implementation offers more flexibility when choosing battery type and manufacturer. Lithium batteries are the most common form of battery used in this scenario.

3.2.2. RTC Battery Lifetime

The RTC battery lifetime determines the time interval between system battery replacement cycles. Current leakage from the RTC battery circuitry on the carrier board is a serious issue and must be considered during the system design phase. The current leakage will influence the RTC battery lifetime and must be factored in when a specific life expectancy of the system battery is being defined.

In order to accurately measure the value of the RTC current it should be measured when the complete system is disconnected from AC power.

3.3 Power Flow and Control Signals Block Diagram

Following figures shows the power flow and control signals block diagram.

Figure 38: Power Block Diagram

When main power is supplied from the carrier, a voltage detector will assert *VIN_PWR_BAD#* signal to tell the module and carrier that the power is good. *VDD_IO_SEL#* will be pulled high on carrier that represents a 3.3V *VDD_IO* carrier. These two signals will turn on the PMIC on module to power on the module. Because *T335X* supports only 3.3V I/O, the module will pull the *VDD_IO_SEL#* pin to the module *VDD_IN* rail through a resistance of 100K. The module will not power up if the module senses a low level on the *VDD_IO_SEL#* (due to the carrier pulling the line down) and the Module supports only 3.3V I/O or receives a low-active *VIN_PWR_BAD#* signal.

Carrier power circuits in the carrier Power domain should not power up unless the module asserts *CARRIER_PWR_ON*. The module signal *CARRIER_PWR_ON* exists to ensure that the module is powered before the main body of carrier circuits (those outside the power and power control path on the carrier).

The main body of carrier board circuits will not be powered until the module asserts the *CARRIER_PWR_ON* and *VDD_IO_SEL#* signals as a high. Module hardware will assert *CARRIER_PWR_ON* and *VDD_IO_SEL#* when all module supplies necessary for module booting are up. The module will continue to assert signal *RESET_OUT#* after the release of *CARRIER_PWR_ON*, for a period sufficient to allow carrier power circuits to come up.

If users would like to have SD boot up, *SDIO_PWR_EN* signal have to be pull up to 3.3V on carrier.

Module and carrier power supplies will not be enabled if the *VIN_PWR_BAD#* is held low by carrier. It is a power bad indication signal from carrier and is 100k pull up to *VDD_IN* on module.

3.4 Power States

The *SMARC T335X* module supports different power states. The table below describes the behavior in the different states and which power rails and peripherals are active. Additional power states can be implemented if required using available GPIOs to control additional power domains and peripherals.

Abbr.	Name	Description	Module	Carrier Board
UPG	UnpLugged	No power is applied to the system, except the RTC battery might be available	No main VDD_IN applied from fixed DC supply, VDD_IN available if backup battery is implemented	No power supply input, RTC battery maybe inserted
OFF	off	System is off, but the carrier board input supply is available	The main VDD_IN is available, but the CPU and peripherals are not running. Only the PMIC is running	Carrier board provides power for module, the peripheral supplies are not available
SUS	Suspend	System is suspended and waits for wakeup sources to trigger	CPU is suspended, wakeup capable peripherals are running while others might be switched off	Power rails are available on carrier board, peripherals might be stopped by software
RUN	Running	System is running	All power rails are available, CPU and peripherals are running	All power rails are available, peripherals are running
RST	Reset	System is put in reset state by holding RESET_IN# is low	All power rails are available, CPU and peripherals are in reset state	All power rails are available, peripherals are in reset state

The figure below shows a sequence diagram for the different power states. The module automatically enters into the running mode when the main power rail is applied to the module. In the running mode, the system can be set to suspend by software. There might be different wake up sources available. Consult the datasheet for T335X module for more information about the available wakeup events.

In the running state, a shutdown request can be triggered by software. This turns off all power rails on the module and requests the carrier board to switch of the power rails for the peripherals. The module can be brought back to the *SMARC T335x Carrier Board Hardware Design Guide, Document Revision 1.3*

running mode in two ways. The module main voltage rail (*VDD_IN*) can be removed and applied again. If needed, this could also be done with a button and a small circuit. *SMARC T335X* module supports being power cycled by asserting the *RESET_IN*# signal (e.g. by pressing the reset button or shunt and relief the reset jumper), please consult the associated module datasheet for more information about the support power cycle methods.

Figure 39: Power States and Transitions

3.5 Power Sequences

When main power is supplied from the carrier, a voltage detector will assert *VIN_PWR_BAD#* signal to tell the module and carrier that the power is good. *VDD_IO_SEL#* will be pulled high on carrier that represents a 3.3V *VDD_IO* carrier. These two signals will enable the PMIC on module to power on the module. Because *T335X* supports only 3.3V I/O, the module will pull the *VDD_IO_SEL#* pin to the module *VDD_IN* rail through a resistance of 100K. The module will not power up if the module senses a low level on the *VDD_IO_SEL#* (due to the carrier pulling the line down) and the Module supports only 3.3V I/O or receives a low-active *VIN_PWR_BAD#* signal.

The SMARC T335X module starts asserting CARRIER_PWR_ON and SMARC T335x Carrier Board Hardware Design Guide, Document Revision 1.3

VDD_IO_SEL# as soon as the main voltage supply is applied to the module and all module supplies necessary for module booting are up. This is to ensure that the module is powered before the main body of carrier circuits (those outside the power and power control path on the carrier) and the *VDD_IO* of module and carrier is matching. The module will continue to assert signal *RESET_OUT#* after the release of *CARRIER_PWR_ON* and *VDD_IO_SEL#*, for a period sufficient time (at least 10ms) to allow carrier power circuits that the peripheral supplies need to ramp up.

The peripheral power rails on the carrier board need to ramp up in a correct sequence. The sequence starts normally with the highest voltage (e.g. 5V) followed by the lower voltages (e.g. 3.3V then 1.5V and so on). Peripherals normally require that a lower voltage rails is never present if a higher rail is missing. Check the datasheet of all peripheral components on the carrier board for a proper sequencing. The T335X modules guarantees to apply the output RESET_OUT# not earlier than 100ms after reset the CARRIER_PWR_ON goes high. This gives the carrier board a sufficient time for ramping up all power rails. SDIO_PWR_EN signal have to be pull up to 3.3V on carrier if users would like to have SD boot up functionality.

Figure 40: Power-Up Sequence

If the operating system supports it, a shutdown sequence can be initiated. Some systems may benefit from shutting down instead of just removing the main power supply as this allows the operating system to take care of any housekeeping (e.g. bringing mass storage devices to a controlled halt). Some operating system may not provide the shutdown function.

As it is not permitted that a lower voltage rail is present when a higher voltage rail has been switched off, the sequence of shutting down the peripheral voltages needs to be considered. The lower voltages (e.g. peripheral 3.3V) need to ramp down before the higher ones do (e.g. peripheral 5V).

Figure 41: Shutdown Sequence

When the *RESET_IN#* is asserted, a reset cycle is initiated. The module internal reset and the external reset output *RESET_OUT#* are asserted as long as *RESET_IN#* is asserted. If the reset input *RESET_IN#* is de-asserted, the internal reset and the *RESET_OUT#* will remain low for at least 1ms until they are also de-asserted and the module starts booting again. This guarantees a minimum reset time of 1ms even if the reset input *RESET_IN#* is triggered for a short time.

Figure 42: Reset Sequence

3.6 Layout Requirements

A proper power supply layout is essential for ensuring EMC compliance. If buck or boost converters are used on the carrier board, ensure any layout requirements as defined by the manufacturer of the devices are followed. Generally, application notes and reference designs carefully document and explain any such requirements.

Place enough power supply bypass capacitors on the voltage inputs of the peripheral devices. Place a bypass capacitor to each power input pin of the T335X module. Be aware of the total capacity on a voltage rail when switching the voltage. If the rails are switched on too fast, the current peaks for charging all the bypass capacitors can be very high. This can produce unacceptable disturbances or can trigger an over current protection circuit. In such cases, the slew rate of switching circuits speed may need to be limited. The following figure shows a simple voltage rail switch circuit. It is recommended that a bypass capacitor (C10 and C6) is placed close to the switching transistor.

Figure 43: Simple Voltage Switch Circuit

When routing power traces, always be aware of the electrical resistance and inductance. Try to make the traces as wide as possible. Power planes should be used instead of traces when possible. Be aware of the copper thickness of the traces. A common specification for copper foils is half ounce of copper per square foot. This is equal to a thickness of $17\mu m$. As a rule of thumb, the resistance of a square shaped trace has a resistance of $1m\Omega$. This means, a trace with width of $100\mu m$ has a resistance of $1m\Omega$ per $100\mu m$ length or a trace with the same width and a length of $100\mu m$ has a resistance of 1Ω .

Copper foils on the outer layers of a PCB (top and bottom layer) often are thicker due to the via plating process. A common value is one ounce of copper per square foot. This equals to a thickness of 35μ m. The traces of on such layers have half the electrical resistance, which is $0.5m\Omega$ for a square shaped trace. Also consider the electrical resistance of vias. For every ampere of current, place at least one via.

3.7 Reference Schematics

It is possible to reach a suitable power up sequence by cascading the power good (e.g. *VIN_PWR_BAD#*) output signals of the buck regulators with enable signal of the next regulator. The *CARRIER_PWR_ON* output features a pull up resistor on the *T335X* module. An additional pull up resistor can be optionally placed on the carrier board. This pull up resistor is only needed to prevent unwanted enabling of the peripheral voltages if the module is not inserted. For designs in which the module is never removed, this pull up is not required.

The *RESET_IN#* and *RESET_OUT#* can also have additional pull up resistors on the carrier board for the same reasons.

Figure 44: Power Supply Reference Schematic

Chapter

Floor Planning the PCB

This Chapter gives mechanical information needed when designing the SMARC carrier board. Section include :

- Carrier Connector
- Module and Carrier Connector Pin Numbering Convention
- Module Outline 82mm x 50mm Module
- Module "Z" Height Consideration
- Carrier Board Connector PCB Footprint
- Module and Carrier Board Mounting Holes GND Connection
- Carrier Board Standoffs

Chapter 4 Floor Planning the PCB

4.1 Carrier Connector

Figure 45: MXM3 Carrier Connector

The Carrier board connector is a 314 pin 0.5mm pitch right angle part designed for use with 1.2mm thick mating PCBs with the appropriate edge finger pattern. The connector is commonly used for MXM3 graphics cards. The SMARC Module uses the connector in a way quite different from the MXM3 usage.

Vender	Vendor P/N	Stack Height	Body Height	Contact Plating	Pin Style	Body Color
Foxconn	AS0B821-S43B - *H	1.5mm	4.3mm	Flash	Std	Black
Foxconn	AS0B821-S43N - *H	1.5mm	4.3mm	Flash	Std	Ivory
Foxconn	AS0B826-S43B - *H	1.5mm	4.3mm	10 u-in	Std	Black
Foxconn	AS0B826-S43N - *H	1.5mm	4.3mm	10 u-in	Std	Ivory
Lotes	AAA-MXM-008-P04_A	1.5mm	4.3mm	Flash	Std	Tan
Lotes	AAA-MXM-008-P03	1.5mm	4.3mm	15 u-in	Std	Tan
Speedtech	B35P101-02111-H	1.56mm	4.0mm	Flash	Std	Black
Speedtech	B35P101-02011-H	1.56mm	4.0mm	Flash	Std	Tan
Speedtech	B35P101-02112-H	1.56mm	4.0mm	10 u-in	Std	Black
Speedtech	B35P101-02012-H	1.56mm	4.0mm	10 u-in	Std	Tan
Speedtech	B35P101-02113-H	1.56mm	4.0mm	15 u-in	Std	Black
Speedtech	B35P101-02013-H	1.56mm	4.0mm	15 u-in	Std	Tan
Aces	91781-314 2 8-001	2.7mm	5.2mm	3 u-in	Std	Black

Vender	Vendor P/N	Stack Height	Body Height	Contact Plating	Pin Style	Body Color
Foxconn	AS0B821-S55B - *H	2.7mm	5.5mm	Flash	Std	Black
Foxconn	AS0B821-S55N - *H	2.7mm	5.5mm	Flash	Std	Ivory
Foxconn	AS0B826-S55B - *H	2.7mm	5.5mm	10 u-in	Std	Black
Foxconn	AS0B826-S55N - *H	2.7mm	5.5mm	10 u-in	Std	Ivory
Speedtech	B35P101-02121-H	2.76mm	5.2mm	Flash	Std	Black
Speedtech	B35P101-02021-H	2.76mm	5.2mm	Flash	Std	Tan
Speedtech	B35P101-02122-H	2.76mm	5.2mm	10 u-in	Std	Black
Speedtech	B35P101-02022-H	2.76mm	5.2mm	10 u-in	Std	Tan
Speedtech	B35P101-02123-H	2.76mm	5.2mm	15 u-in	Std	Black
Speedtech	B35P101-02023-H	2.76mm	5.2mm	15 u-in	Std	Tan
Foxconn	AS0B821-S78B - *H	5.0mm	7.8mm	Flash	Std	Black
Foxconn	AS0B821-S78N - *H	5.0mm	7.8mm	Flash	Std	Ivory
Foxconn	AS0B826-S78B - *H	5.0mm	7.8mm	10 u-in	Std	Black
Foxconn	AS0B826-S78N - *H	5.0mm	7.8mm	10 u-in	Std	Ivory
Yamaichi ⁽¹⁾	CN113-314-2001	5.0mm	7.8mm	0.3 u-meter	Std	Black

Other, taller stack heights may be available from these and other vendors. Stack heights as tall as 11mm are shown on the Aces web site.

Note:

- 1. Yamaichi CN113-314-2001 is automotive grade.
- 2. The vendor drawings for the connectors listed above show a PCB footprint pattern for use with an MXM3 graphics card. This footprint, and the associated pin numbering, is not suitable for SMARC use. The SMARC T335x Carrier Board Hardware Design Guide, Document Revision 1.3

MXM3 standard gangs large groups of pins together to provide ~80W capable power paths needed for X86 graphics cards. The SMARC module "ungangs" these pins to allow more signal pins. Footprint and pin numbering information for application of this 314 pin connector to SMARC is given in the sections below.

4.2 Module and Carrier Connector Pin Numbering Convention

The Module pins are designated as P1 - P156 on the Module Primary (Top) side, and S1 - S158 on the Module Secondary (Bottom) side. There is a total of 314 pins on the Module. The connector is sometimes identified as a 321 pin connector, but 7 pins are lost to the key (4 on the primary side and 3 on secondary side).

The SMARC Module pins are deliberately numbered as P1 - P156 and S1 - S158 for clarity and to differentiate the SMARC Module from MXM3 graphics modules, which use the same connector but use the pins for very different functions. MXM3 cards and MXM3 baseboard connectors use different pin numbering scheme.

4.3 Module Outline – 82mm x 50mm Module

Two Module sizes are defined in *SMARC* specification: $82mm \times 50mm$ and $82mm \times 80mm$. Since *SMARC T335X* is an $82mm \times 50mm$ module, we will only draw our attention on this dimension. The figure on the following page details the $82mm \times 50mm$ Module mechanical attributes, including the pin numbering and edge finger pattern.

Figure 46: SMARC T335X Module Mechanical Outline

4.4 Module "Z" Height Consideration

Note from Figure 46 Module Mechanical Outline above that the component height on the Module is restricted to a maximum component height of 2.9mm on the Module Primary (Top) side and to 0.9mm on the Module Secondary (Bottom) side.

The 0.9mm Secondary side component height restriction allows the Module to be used with 1.5mm stack-height Carrier connectors. When used with 1.5mm stack height connectors, the 'Z' height profile from Carrier board Top side to tallest Module component is 5.6mm.

When a 1.5mm stack height Carrier board connector is used, there shall not be components on the Carrier board Top side in the Module region. Additionally, when 1.5mm stack height connectors are used, there should not be PCB traces on the Carrier top side in the Module shadow. This is to prevent possible problems with metallic Module heat sink attachment hardware that may protrude through the Module.

If Carrier board components are required in this region, then the Carrier components must be on the Carrier Bottom side, or a taller board-to-board connector may be used. Stack heights of 2.7mm, 3mm, 5mm and up are available. The one used on *SMART-BEE* evaluation carrier is 5mm.

The figure below shows the minimum "Z" height from Carrier board Top side to tallest Module component. The dimensions of those components must of course be considered in a system design.

Figure 47: SMARC T335X Module Minimum "Z" Height

4.5 Carrier Board Connector PCB Footprint

Figure 48: Carrier Board Connector PCB Footprint

Note:

The hole diameter for the 4 holes (82mm x 50mm Module) or 7 holes (82mm x 80mm Module) depends on the spacer hardware selection. See the section below for more information on this.

4.6 Module and Carrier Board Mounting Holes – GND Connection

It shall be possible to tie all Module and Carrier board mounting holes to GND. The holes should be tied directly to the GND planes, although Module and Carrier designers may optionally make the mounting hole GND connections through passive parts, allowing the mounting holes to be isolated from GND if they feel it necessary.

4.7 Carrier Board Standoffs

Figure 49: Screw Fixation

Standoffs secured to the Carrier board are expected. The standoffs are to be used with M2.5 hardware. Most implementations will use Carrier board standoffs that have M2.5 threads (as opposed to clearance holes). A short M2.5 screw and washer, inserted from the Module top side, secures the Module to the Carrier board threaded standoff.

The SMARC connector board-to-board stack heights that are available may result in the use of non-standard spacer lengths. The board-to-board stack heights available include 1.5mm, 2.7mm and 5mm. Of these three, only the spacer for the 5mm stack would likely be a standard length.

Penn Engineering and Manufacturing (PEM) (www.pemnet.com) makes surface mount spacers with M2.5 internal threads. The product line is called *SMARC T335x Carrier Board Hardware Design Guide, Document Revision 1.3* SMTSO ("surface mount technology stand offs"). The shortest standard length offered is 2mm. A custom part with 1.5mm standoff length, M2.5 internal thread, and 5.56mm standoff OD is available from PEM. The Carrier PCB requires a 4.22mm hole and 6.2mm pad to accept these parts.

Other vendors such as RAF Electronic Hardware (www.rafhdwe.com) offer M2.5 compatible swaged standoffs. Swaged standoffs require the use of a press and anvil at the CM. Their use is common in the industry. The standoff OD and Carrier PCB hole size requirements are different from the PEM SMTSO standoffs described above.

DISCLAIMER:

Copyright © Embedian, Inc. All rights reserved. All data is for information purposes only and not guaranteed for legal purposes. Information has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies.

Brand and product names are trademarks or registered trademarks of their respective owners.

Specifications are subject to change without notice.