SMARC-IMX8MM_mcuxpresso_sdk 2.8.0-8mm

Build and Install FreeRTOS for SMARC-IMX8MM (Cortex-M4 core)
Availability
Carrier Board
Basic Resources
ARM Cross Compiler: GCC
Generating SSH Keys
® Step 1. Check for SSH keys
® Step 2. Generate a new SSH key
= Step 3. Add your SSH key to Embedian Gitlab Server
Download Source Codes
Install Required Packages
Build ROMSG Sample Application
Test Application at U-Boot
Setup SD Card
® Replace kernel device tree file:
® Pass Kernel Parameters to Kernel (UEnv.txt)
® Demo Programs
" RPMsg TTY demo
" RPMsg Ping Pong demo
® Hello World demo
| |
| |

GPIO demo
PWM demo
" Setup eMMC

Build and Install FreeRTOS for SMARC-iIMX8MM (Cortex-M4 core)

This document provides instructions for advanced users how Embedian offers patches and builds a customized version of FreeRTOS for
Embedian's SMARC-iIMX8MM product platform and how to install the images to bring the evaluation board up and running.

Our aim is to fully support our hardware through device drivers. We also provide unit tests so that testing a board is easy and custom
development can start precisely. The recommended host environment is Ubuntu 16.04.

Before using this guide, we assume you understand how to setup a Yocto, Debian or Ubuntu working SD card. This guild apply to U-boot 2019.04
and Linux kernel 4.19.35 or higher. Here we are not mention Yocto/Debian/Ubuntu setup and compilation. There are well document available from
Embedian.

There are several options in both processors, code can be located in one of the following:

® TCM (Tightly Coupled Memory): 128kB available
* DDR: up to 1MB available (can be increased, set in the device tree)

Note that the TCM is the preferred option when possible since it offers the best performances since it is an internal memory dedicated to the
Cortex-M4.

External memories, such as the DDR, offer more space but are also much slower to access.

In this article, it is assumed that every application runs from the TCM.

Availability

SMARC-IMX8MM from Embedian

Carrier Board

EVK-STD-CARRIER-S20 (universal carrier board for all SMARC 2.0 modules) from Embedian

Basic Resources

https://github.com/boundarydevices/freertos-boundary/blob/imx8m_2.3_ga/boards/nitrogen8m/demo_apps/hello_world/armgcc/MIMX8MQ6xxxJZ_cm4_ram.ld
https://github.com/boundarydevices/freertos-boundary/blob/imx8m_2.3_ga/boards/nitrogen8m/demo_apps/hello_world/armgcc/MIMX8MQ6xxxJZ_cm4_ddr_ram.ld
http://www.embedian.com/index.php?main_page=product_info&cPath=1&products_id=28
http://www.embedian.com/index.php?main_page=product_info&cPath=8&products_id=25

® AArch64 Cross Compiler
® Linaro: https://launchpad.net/linaro-toolchain-binaries
® Bootloader
® Das U-Boot — the Universal Boot Loader http://www.denx.de/wiki/U-Boot
® Source — http://git.denx.de/?p=u-boot.git,a=summary
® Linux Kernel
Linus's Mainline tree: http://git.kernel.org/?p=linux/kernel/git/torvalds/linux.git;a=summary
Freescale Linux source tree: git://git.freescale.com/imx/linux-imx.git
Freescale BSP meta layer: git://git.freescale.com/imx/meta-fsl-bsp-release
OpenEmbedded/Yocto BSP layer for Freescale's ARM platform git://git.yoctoproject.org/meta-fsl-arm
Embedian SMARC-iIMX8MM kernel source tree for linux smarc-8mm_imx_4.19.35_1.0.0: git@git.embedian.com:developer/smar
c-fsl-linux-kernel.qgit
* ARM based rootfs
® Debian Squeeze: http://www.debian.org/

ARM Cross Compiler: GCC

To build Embedian’s SMARC-iIMX8MM FreeRTOS, you will need to install the following ARM GNU gcc compiler first:

For MCUXpresso 2.8.0 FreeRTOS, you need to use the following ARM GNU GCC coss compilier.
$ wget -c https://devel oper.arm coni -/ nmedi a/ Fi | es/ downl oads/ gnu-r i 9- 201994/ gcc- ar m none- eabi - 9- 2019- gq4-
maj or - x86_64-1inux.tar.bz2
$ sudo tar -C /opt -xvf gcc-arm none-eabi-9-2019-g4-maj or-x86_64-1inux.tar.bz2

$ export ARMGCC DI R=/ opt/ gcc-ar m none- eabi - 9- 2019- q4- maj or

Test:

If this test fails, verify that you have the 32bit libraries installed on your development system.

$ ${ARMCCC DI R}/ bi n/ ar m none- eabi - gcc --version

arm-none-eabi-gcc (GNU Tools for Arm Embedded Processors 9-2019-g4-major) 9.2.1 20191025 (release) [ARM/arm-9-branch revision
277599]

Copyright (C) 2019 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

To download the source codes, you need to register at Embedian's git server first and put your ssh public key there.

Generating SSH Keys

We recommend you use SSH keys to establish a secure connection between your computer and Embedian Gitlab server. The steps below will
walk you through generating an SSH key and then adding the public key to our Gitlab account.

Step 1. Check for SSH keys

First, we need to check for existing ssh keys on your computer. Open up Git Bash and run:

$ cd ~/.ssh
$1s
Lists the files in your .ssh directory

Check the directory listing to see if you have a file named either i d_r sa. pub ori d_dsa. pub. If you don't have either of those files go to step 2.
Otherwise, you already have an existing keypair, and you can skip to step 3.

https://launchpad.net/linaro-toolchain-binaries
http://www.denx.de/wiki/U-Boot
http://git.denx.de/?p=u-boot.git;a=summary
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux.git;a=summary
git://git.freescale.com/imx/linux-imx.git
git://git.freescale.com/imx/meta-fsl-bsp-release
git://git.yoctoproject.org/meta-fsl-arm
http://www.debian.org/
http://git.embedian.com/
https://developer.arm.com/-/media/Files/downloads/gnu-rm/9-2019q4/gcc-arm-none-eabi-9-2019-q4-major-x86_64-linux.tar.bz2
https://developer.arm.com/-/media/Files/downloads/gnu-rm/9-2019q4/gcc-arm-none-eabi-9-2019-q4-major-x86_64-linux.tar.bz2

Step 2. Generate a new SSH key

To generate a new SSH key, enter the code below. We want the default settings so when asked to enter a file in which to save the key, just press
enter.

$ ssh-keygen -t rsa -C "your_enmi | @xanpl e. conf

Creates a new ssh key, using the provided enmail as a | abel

CGenerating public/private rsa key pair.

Enter file in which to save the key (/c/Users/you/.ssh/id_rsa): [Press enter]
$ ssh-add id_rsa

Now you need to enter a passphrase.

Ent er passphrase (enpty for no passphrase): [Type a passphrase]
Enter same passphrase again: [Type passphrase again]

Which should give you something like this:

Your identification has been saved in /c/Users/you/.ssh/id_rsa.

Your public key has been saved in /c/Users/you/.ssh/id_rsa. pub.

The key fingerprint is:

01: 0f : f4: 3b: ca: 85:d6: 17: al: 7d: f 0: 68: 9d: f 0: a2: db your _enmi | @xanpl e. com

Step 3. Add your SSH key to Embedian Gitlab Server

Copy the key to your clipboard.

$ cat ~/.ssh/id_rsa.pub

ssh-rsa AAAAB3NzaClyc2EAAABDAQABAAABAQDQUENh8uGpf xazVU6+uE4bsDr s/ t EES/ BPWj MAxak
60qgCh6nUr QEBWS+VXxMMRUN3Kzw LRIS] 8ATNTK2CSM BvR+X8ZeXNTyAdaDxULs/ St VhH+QRt FEGy40
i M zvl| TyORY89j zhl sgZzwr 01nqoSeWMSd+59JW Fj Vy OnwVNVt bek 7Nf ul GGAPai j C6Whshr 2uChB
Pk8ScG QBz4VgNXP6CWhCXTql K7EQ 7y X2CKd6FgEFr zae+5Jf 63XnBg6abbE3yt Cr MT/ j Yy500 2XSg
6j | xSFNKcONAcT MTVk TXeG OgeCeGokZdt qr yRt O GmOeuQeldd3l +Z2z3JyT your _emai | @xanpl e. ¢
om

Go to Embedian Git Server. At Profile Setting --> SSH Keys --> Add SSH Key

Paste your public key and press "Add Key" and your are done.

Download Source Codes

For downloading the latest source code of FreeRTOS for SMARC-iIMX8MM, we have to use MCUExpresso SDK generator online tool. Below is
the link:

https://mcuxpresso.nxp.com/en/select

Embedian has customized it for SMARC-iIMX8MM.
$ git clone git@it.enbedi an.com devel oper/freertos-enbedian.git freertos -b ncuxpresso_sdk_2. 8. 0-8nm

The file structures are as below.

http://git.embedian.com/
https://mcuxpresso.nxp.com/en/select
http://comdeveloper

$ tree freertos -L 1
freertos
boar ds
CMVBI S
conmponent s
COPYI NG BSD- 3
devi ces
docs
EVK- M MX8MM nani f est _v3_6. xm
m ddl ewar e
M R
rtos
SMVARC- i MX8 (MM _nani f est _v3_6. xmi
SW Cont ent - Regi ster.txt
tool s

9 directories, 4 files
$

Install Required Packages

Install cmake.

$ sudo apt-get install cnake

Build ROMSG Sample Application

Change the directory to the application project directory, which has a path similar to the following:

$ cd <install _dir>/freertos/boards/snmarci nk8mi mul ti core_exanpl es/rpnsg_lite_str_echo_rtos/arngcc

$./build_all.sh

This will compile and create binaries. The binaries will be available as
<install_dir>freertos/boards/smarcimx8mm/multicore_examples/rpmsg_lite_str_echo_rtos/armgcc/release/rpmsg_lite_str_echo_rtos_imxcm4.bin

Same steps will be applied for other sample applications.

Test Application at U-Boot

Once you finished compilation of rtos application, you can test it at U-Boot first. Prepare a working SD card.

$ export DI SK=/ dev/ sdb

$ cd <install _dir>/freertos/boards/smarci nk8mi nul ti core_exanpl es/rpnsg _lite_str_echo_rtos/arngcc/rel eas
e/

$ sudo nount ${DI SK}1 /nedi a/ boot/
$ sudo cp -v rpnsg_lite_str_echo_rtos_i nkcmd. bin /nmedi a/ boot

$ sudo unount /nedi a/ boot
Bootup the device and stop at U-Boot Command Prompt.

u-boot$ load mmc 1:1 0x48000000 rpmsg_lite_str_echo_rtos_imxcm4.bin

16828 bytes read in 16 ms (1 MB/s)

u-boot$ run cpminem

u-boot$ run miboot

Booting M4 from TCM

Starting auxiliary core at 0x007E0000 ...
u- boot $

You will see messages from Cortex-M4 debug port at SER1.

1 1. If your u-boot version is v2020.04, the log message will be somewhat different.
u-boot$ load mmc 1:1 0x48000000 rpmsg_lite_str_echo_rtos_imxcm4.bin

16828 bytes read in 16 ms (1 MB/s)

u-boot$ run cpminem

u-boot$ run miboot

Booting M4 from TCM

Starting auxiliary core stack = 0x20020000, pc = Ox1FFEO355...

u- boot $
2. If your u-boot version is v2020.04, the imx-atf patch should not be applied. This UART4 should be assigned to M4 domain in RDC.

Setup SD Card

Assuming that you have a working Yocto/Debian/Ubuntu SD card.

Replace kernel device tree file:

The FreeRTOS examples uses SER1, 12C3 (12C_GP, S48 and S49), SPI0, GPIO0 (P108) and PWM3 (GPIOb). It is therefore, we need to disable
those pin for Cortex-A53 and reserve a dedicate memory area for Cortex-M4.
All available DTB files for Cortex-M4 are listed in the table below.

DTB File Name (for Cortex-M4) Description
fsl-smarci nk8mm n¥. dtb Device tree blob for SMARC-iIMX8MM

Replacing Kernel device tree file to adopt Cortex-M4

$ export DISK=/dev/sdb
$ sudo mount ${DI SK}1 /medi a/ boot/

$ sudo cp -v arch/arnb4/ boot/dts/ enbedi an/ fsl - smarci mk8nm m4. dt b / medi a/ boot / dt bs/ f sl - smar ci nx8mm dt b

$ sudo unount /nedi a/ boot

The device tree nane in your SD card has be to fsl-smarci nx8nm dtb

Pass Kernel Parameters to Kernel (UEnv.txt)

At uEnv.txt file, you need to add the following parameters.

$ sudo nount ${DI SK}1 /nedi a/ boot/

$ sudo vi m/nedi a/ boot/ uEnv. t xt
$ sudo unount /nedi a/ boot
Add the following parameter below the line "image=Image"

m4_bin=m4_binary_name.bin
m4_addr=0x7e0000
m4_addr_tmp=0x48000000

Add the following parameters in the "uenvemd" and before "run mmcboot".
uenvemd=run loadimage; run loadfdt; run loadm4bin; run cpom4mem; run m4boot; run mmchoot

Boot up the device and you will see "M4 is started" at dmesg.

Demo Programs
In this section, we will show how to use the demo programs.

RPMsg TTY demo

This demo application demonstrates the RPMsg remote peer stack. It works with Linux RPMsg master peer to transfer string content back and
forth. The Linux driver creates a tty node to which you can write to. The MCU displays what is received, and echoes back the same message as
an acknowledgement. The tty reader on ARM Cortex-A53 core can get the message, and start another transaction. The demo demonstrates
RPMsg'’s ability to send arbitrary content back and forth.

Copy rpmsg_lite_str_echo_rtos_imxcm4.bin to the first partition of your SD card and add m4_bin=rpmsg_lite_str_echo_rtos_imxcm4.bin at
UuEnv.txt file. Boot up the device. You will see SERL1 print out the following Cortex-M4 messages.

RPMSG String Echo FreeRTOS RTOS API Demo...
Nameservice sent, ready for incoming messages...

At device side,

$ nodprobe inmx_rpnsg_tty

$ echo "this is a test" > /dev/ttyRPMSG30

You will see SER1 print out the following messages.

Get Message From Master Side : "hello world!" [len : 12]
Get Message From Master Side : "this is a test" [len : 14]
Get New Line From Master Side

RPMsg Ping Pong demo

Same as previous demo, this one demonstrates the RPMsg communication. After the communication channels are created, Linux OS transfers
the first integer to FreeRTOS OS. The receiving peer adds 1 to the integer and transfers it back, a hundred times and then stops.

Copy rpmsg_lite_pingpong_rtos_linux_remote.bin to the first partition of your SD card and add m4_bin=rpmsg_lite_pingpong_rtos_linux_remote.b
in at uEnv.txt file. Boot up the device. You will see SER1 print out the following Cortex-M4 messages.

RPMSG Ping-Pong FreeRTOS RTOS APl Demo...
RPMSG Share Base Addr is 0xb8000000

Link is up!

Namevice announce sent.

At device side,

$ nodprobe i mx_r pnsg_pi ngpong

You will see SER1 print out the following messages.

Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...

Hello World demo

The Hello World project is a simple demonstration program that uses the BSP software. It prints the “Hello World” message to the ARM
Cortex-M4 debug terminal SER1.

Copy hello_world.bin to the first partition of your SD card and add m4_bin=hello_world.bin at uEnv.txt file. Boot up the device. You will see
SER1 print out the following Cortex-M4 messages.

hello world.

GPIO demo

The GPIO demo code uses GPIOO0 as an example to toggle this pin.

Copy igpio_led_output.bin to the first partition of your SD card and add m4_bin=igpio_led_output.bin at uEnv.txt file. Boot up the device. You will
see SERL1 print out the following Cortex-M4 messages.

GPIO Driver example
The LED is blinking.

Use scope to measure GPIOO0, you will see a square wave that means this pin is toggled.

PWM demo

The PWM demo code uses GPIO5 (PWM3) as an example.

Copy ipwm.bin to the first partition of your SD card and add m4_bin=ipwm.bin at uEnv.txt file. Boot up the device. You will see SER1 print out the
following Cortex-M4 messages.

PWM driver example.

Use scope to measure GPIO5, you will see PWM signals

Setup eMMC

For SMARC-IMX8MM, the SD card is always emulated as /dev/mmcblkl and on-module eMMC is always emulated as /dev/mmcblk0. Setting up
eMMC now is nothing but changing the device descriptor.

Follow exactly the same steps as that set up SD card. This time, the first partition of eMMC will be /dev/immchblkOp1.

version 1.0a, 9/03/2020 Last updated 2020-9-03

	SMARC-iMX8MM_mcuxpresso_sdk_2.8.0-8mm

